Axial \& trace anomalies in DVCS

Shohini Bhattacharya
RIKEN BNL
1 November 2023

In Collaboration with:

Yoshitaka Hatta (BNL)
Werner Vogelsang (Tubingen U.)

Parallel Workshop 2

Based on:
arXiv:2210.13419, 2305.09431

Outline

- Recap on chiral \& trace anomalies in QCD
- Connection between GPDs \& anomalies:

Calculation of box diagrams relevant for Compton scattering:

- Polarized case
- Unpolarized case

Outline

- Recap on chiral \& trace anomalies in QCD

Connection between GPDs \& anomalies:

Calculation of box diagrams relevant for

Compton scattering:

- Unpolarized case

Axial / Chiral anomaly

Recap on chiral anomaly in QCD:

- Lagrangian invariant under global chiral rotation $\psi \rightarrow e^{i \alpha \gamma_{5}} \psi$
- Axial-vector current: $J_{5}^{\mu}=\sum_{f} \bar{\psi}_{f} \gamma^{\mu} \gamma_{5} \psi_{f}$

Axial / Chiral anomaly

Recap on chiral anomaly in QCD:

- Lagrangian invariant under global chiral rotation $\psi \rightarrow e^{i \alpha \gamma_{5}} \psi$
- Axial-vector current: $J_{5}^{\mu}=\sum_{f} \bar{\psi}_{f} \gamma^{\mu} \gamma_{5} \psi_{f}$
- But measure of the path integral is not invariant, which breaks the conservation of the axial current
K. Fujikawa, PRL 1979

Axial / Chiral anomaly

Anomaly equation:

$$
\partial_{\mu} J_{5}^{\mu}=-\frac{n_{f} \alpha_{s}}{4 \pi} F^{\mu \nu} \tilde{F}_{\mu \nu} \quad \tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

A fundamental property of axial-vector current is the anomaly equation

Axial / Chiral anomaly

Anomaly equation:

$$
\partial_{\mu} J_{5}^{\mu}=-\frac{n_{f} \alpha_{s}}{4 \pi} F^{\mu \nu} \tilde{F}_{\mu \nu} \quad \tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

A fundamental property of axial-vector current is the anomaly equation

Adler - Bell - Jackiw chiral anomaly

Famous example: ABJ anomaly contribution to $\pi^{0} \rightarrow 2 \gamma$

Axial / Chiral anomaly

Anomaly equation:

$$
\partial_{\mu} J_{5}^{\mu}=-\frac{n_{f} \alpha_{s}}{4 \pi} F^{\mu \nu} \tilde{F}_{\mu \nu} \quad \quad \tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

A fundamental property of axial-vector current is the anomaly equation

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:
$\left\langle p_{2}\right| J_{5}^{\mu}\left|p_{1}\right\rangle=\frac{n_{f} \alpha_{\alpha}}{4 \pi} \frac{\overparen{i l^{\mu}}}{l^{2}}\left\langle p_{2}\right| F_{a}^{\alpha \beta} \tilde{F}_{\alpha \beta}^{a}\left|p_{1}\right\rangle$
Triangle diagram is dominated by infra-red pole

Axial / Chiral anomaly

Axial Form Factors:

$$
\left\langle P_{2}\right| J_{5}^{\mu}\left|P_{1}\right\rangle=\bar{u}\left(P_{2}\right)\left[\gamma^{\mu} \gamma_{5} g_{A}\left(l^{2}\right)+\frac{l^{\mu} \gamma_{5}}{2 M} g_{P}\left(l^{2}\right)\right] u\left(P_{1}\right)
$$

$$
\text { Massless pole in pseudo scalar Form Factor? } g_{P}\left(l^{2}\right) \sim \frac{1}{l^{2}}
$$

A perturbative solutio $g_{A}(0)=\Delta \Sigma$: Fraction of proton spin carried by quarks

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:
$\left\langle p_{2}\right| J_{5}^{\mu}\left|p_{1}\right\rangle=\frac{n_{f} \alpha_{\alpha}}{4 \pi} \frac{\overparen{i l^{\mu}}}{l^{2}}\left\langle p_{2}\right| F_{a}^{\alpha \beta} \tilde{F}_{\alpha \beta}^{a}\left|p_{1}\right\rangle$
Triangle diagram is dominated by infra-red pole

Axial / Chiral anomaly

Axial Form Factors:

$$
\left\langle P_{2}\right| J_{5}^{\mu}\left|P_{1}\right\rangle=\bar{u}\left(P_{2}\right)\left[\gamma^{\mu} \gamma_{5} g_{A}\left(l^{2}\right)+\frac{l^{\mu} \gamma_{5}}{2 M} g_{P}\left(l^{2}\right)\right] u\left(P_{1}\right)
$$

A tundamental property of axtal-vector current is the anomalv eauation

Aperturbative soly on to ano \ln QCD, we expect: $g_{P}\left(l^{2}\right) \sim \frac{1}{l^{2}-m_{\eta^{\prime}}^{2}}$
eta meson mass generation

Deeply tied to the UA(1) problem: Why is the η^{\prime} so massive ($957 \mathrm{MeV}!$)?

Axial / Chiral anomaly

Twist-2 GPDs			
Pol^{Γ}	γ^{+}	$\gamma^{+} \gamma_{5}$	$\sigma^{+j} \gamma_{5}$
U	H		E_{T}
\mathbf{L}		\widetilde{H}	\widetilde{E}_{T}
T	E	\widetilde{E}	$H_{T} \widetilde{H}_{T}$

Any implications for the corresponding GPD?

$$
g_{P}\left(l^{2}\right)=\int_{-1}^{1} d x \tilde{\boldsymbol{E}}\left(x, \boldsymbol{\xi}, l^{2}\right)
$$

Trace anomaly

Recap on trace anomaly in QCD:

- Lagrangian invariant under scale transformation $x^{\mu} \rightarrow e^{\sigma} x^{\mu} \quad \phi \rightarrow e^{-D \sigma} \phi$
- Dilatation current: $D^{\mu}=\Theta^{\mu \nu} x_{\nu}$
$\Theta^{\mu \nu}$: Energy Momentum Tensor (EMT)
- Conformal symmetry explicitly broken by quantum effects

$$
\partial_{\mu} D^{\mu}=\Theta_{\mu}^{\mu} \neq 0
$$

Trace anomaly

Recap on trace anomaly in QCD:

- A quantum anomaly in the trace of its energy momentum tensor (conformal anomaly) breaks conformal invariance

Trace anomaly:

$$
\Theta_{\mu}^{\mu}=\frac{\beta(g)}{2 g} F^{\mu \nu} F_{\mu \nu}
$$

$\Theta^{\mu \nu}$: Energy Momentum Tensor (EMT)

Fundamentally important in QCD: Trace anomaly is the origin of hadron masses

$$
\langle P| \Theta_{\mu}^{\mu}|P\rangle=2 M^{2}
$$

Trace anomaly

Recap on trace anomaly in QCD:

- A quantum anomaly in the trace of its energy momentum tensor (conformal anomaly) breaks conformal invariance

Trace anomaly:

$$
\Theta_{\mu}^{\mu}=\frac{\beta(g)}{2 g} F^{\mu \nu} F_{\mu \nu}
$$

$\Theta^{\mu \nu}$: Energy Momentum Tensor (EMT)

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:
$\left\langle p_{2}\right| \Theta^{\mu \nu}\left|p_{1}\right\rangle=-\frac{e^{2}}{24 \pi \bigcup^{2}}\left(p^{\mu} p^{\nu}+\frac{l^{\mu} l^{\nu}-l^{2} g^{\mu \nu}}{4}\right)\left\langle p_{2}\right| F^{\alpha \beta} F_{\alpha \beta}\left|p_{1}\right\rangle$
Triangle diagram is dominated by infra-red pole

Trace anomaly

Rel Gravitational Form Factors:

$$
\left\langle P_{2}\right| \Theta_{f}^{\mu \nu}\left|P_{1}\right\rangle=\frac{1}{M} \bar{u}\left(P_{2}\right)\left[P^{\mu} P^{\nu} A_{f}+\left(A_{f}+B_{f}\right) \frac{\left.P^{(\mu} i \sigma^{\nu}\right) \rho}{2} l_{\rho}+\frac{D_{f}}{4}\left(l^{\mu} l^{\nu}-g^{\mu \nu} l^{2}\right)+M^{2} \bar{C}_{f} g^{\mu \nu}\right] u\left(P_{1}\right)
$$

Massless poles in Gravitational Form Factors?

$$
A_{f}\left(l^{2}\right), B_{f}\left(l^{2}\right), D_{f}\left(l^{2}\right) \sim \frac{1}{l^{2}}
$$

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:

$$
\left\langle p_{2}\right| \Theta^{\mu \nu} \quad\left|p_{1}\right\rangle=-\frac{e^{2}}{24 \pi \widehat{l} l^{2}}\left(p^{\mu} p^{\nu}+\frac{l^{\mu} l^{\nu}-l^{2} g^{\mu \nu}}{4}\right)\left\langle p_{2}\right| F^{\alpha \beta} F_{\alpha \beta}\left|p_{1}\right\rangle
$$

Triangle diagram is dominated by infra-red pole

Trace anomaly

Re, Gravitational Form Factors:

$$
\left\langle P_{2}\right| \Theta_{f}^{\mu \nu}\left|P_{1}\right\rangle=\frac{1}{M} \bar{u}\left(P_{2}\right)\left[P^{\mu} P^{\nu} A_{f}+\left(A_{f}+B_{f}\right) \frac{\left.P^{(\mu} i \sigma^{\nu}\right) \rho}{2} l_{\rho}+\frac{D_{f}}{4}\left(l^{\mu} l^{\nu}-g^{\mu \nu} l^{2}\right)+M^{2} \bar{C}_{f} g^{\mu \nu}\right] u\left(P_{1}\right)
$$

Massless poles in Gravitational Form Factors?

$$
A_{f}\left(l^{2}\right), B_{f}\left(l^{2}\right), D_{f}\left(l^{2}\right) \sim
$$

In QCD, we expect:

$$
\frac{1}{l^{2}} \rightarrow \frac{1}{l^{2}-m_{G}^{2}}
$$

glueball mass generations

Fujita, Hatta, Sugimoto, Ueda (2022)
Mamo, Zahed (2019)

Trace anomaly

Gravitational
\square

Massless pol

$A_{f}\left(l^{2}\right), B_{f}\left(l^{2}\right), D_{f}\left(l^{2}\right) \sim$

Any implications for the corresponding GPD?

$$
\begin{aligned}
& A\left(l^{2}\right)+\xi^{2} D\left(l^{2}\right)=\int_{-1}^{1} d x x \boldsymbol{H}\left(x, \boldsymbol{\xi}, l^{2}\right) \\
& B\left(l^{2}\right)-\xi^{2} D\left(l^{2}\right)=\int_{-1}^{1} d x x \boldsymbol{E}\left(x, \xi, l^{2}\right)
\end{aligned}
$$

In QCD, we expect:

$$
\frac{1}{l^{2}} \rightarrow \frac{1}{l^{2}-m_{G}^{2}}
$$

glueball mass generations

Fujita, Hatta, Sugimoto, Ueda (2022)
Mamo, Zahed (2019)

Outline

- Recap on chiral \& trace anomalies in QCD
- Connection between GPDs \& anomalies:

Calculation of box diagrams relevant for Compton scattering:

- Polarized case
- Unpolarized case

Imprint of Anomalies in QCD Compton scattering

QCD Compton Scattering

In QCD Compton scattering, box diagrams appear in perturbation theory at one-loop

Box diagram can be viewed as a non-local generalization of triangle diagram

If triangle is dominated by anomaly pole, trace of that should be visible in box diagram

Imprint of Anomalies in DIS

First calculation of box diagram with $l^{2} \neq 0$:

Ane role of the chiral anomaly in polarized deeply inelastic scattering I: Finding the triangle graph inside the box diagram in Bjorken and Regge asymptotics

Andrey Tarasov ${ }^{1,2}$ and Raju Venugopalan ${ }^{3}$
The role of the chiral anomaly in polarized deeply inelastic scattering II:
A fundamental pro| Topological screening and transitions from emergent axion-like dynamics

Andrey Tarasov ${ }^{1,2}$ and Raju Venugopalan ${ }^{3}$
Andrey \& Raju demonstrated within world-line formalism that to capture the physics of anomaly we need to calculate everything in off-forward kinematics for polarized DIS

Box diagram

$$
\begin{aligned}
& \text { Calculation in off-forward kinematics }\left(l=p_{2}-p_{1}\right) \text { : } \\
& \left.\left\langle p_{2}\right| J_{5}^{\mu}\left|p_{1}\right\rangle=\frac{n_{f} \alpha_{s}}{4 \pi}\left(\frac{i l^{\mu}}{l^{2}}\right\} p_{2}\left|F_{a}^{\alpha \beta} \tilde{F}_{\alpha \beta}^{a}\right| p_{1}\right\rangle \\
& \text { Triangle diagram is dominated by infra-red pole }
\end{aligned}
$$

Imprint of Anomalies in QCD Compton scattering

First calculation of b Chiral and trace anomalies in Deeply Virtual Compton Scattering :

 QCD factorization and beyondThe role of the triangle g1

Shohini Bhattacharya, ${ }^{1, *}$ Yoshitaka Hatta, ${ }^{2,1, \dagger}$ and Werner Vogelsang ${ }^{3}$, \ddagger
We explored the physics of anomaly in DVCS using Feynman-diagram approach

Calculation of anti-symmetric/symmetric (μ, ν) of Compton amplitude

FIG. 1: Diagrams for the si with $t=l^{2} \neq 0 \quad\left(\Lambda_{\mathrm{QCD}}^{2} \ll t \ll Q^{2}\right)$

Remarks on DVCS:

The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

$$
T^{\mu \nu}=\sum_{a=q, g} \int \frac{d x}{x} C_{a}^{\mu \nu}\left(\frac{x_{B}}{x}, \frac{\xi}{x}\right) f_{a}(x, \xi, t)+\mathcal{O}\left(1 / Q^{2}\right)
$$

Original proof of factorization is for $t \sim \Lambda_{Q C D}^{2}$ regime

We extended factorization for the first time within $\Lambda_{Q C D}^{2} \ll t \ll Q^{2}$ regime

Imprint of Anomalies in QCD Compton scattering

Chiral and trace anomalies in Deeply Virtual Compton Scattering : QCD factorization and beyond

Shohini Bhattacharya, ${ }^{1, *}$ Yoshitaka Hatta, ${ }^{2,1, \dagger}$ and Werner Vogelsang ${ }^{3, \ddagger}$
We explored the physics of anomaly in DVCS using Feynman-diagram approach

Box diagram

FIG. 1: Diagrams for the subprocess $\gamma^{*} g \rightarrow \gamma^{*} g$ in Compton scattering.

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Antisymmetric part of Compton amplitude
Collinear singularity regularized by l^{2}
$\left.-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \times T_{\mu \nu}^{\text {asym }} \approx \frac{1}{2} \frac{\alpha_{s}}{2 \pi}\left(\sum_{f} e_{f}^{2}\right) \bar{u}\left(P_{2}\right) \tilde{\kappa}_{q g} \ln \frac{Q^{2}}{-l^{2}}+\delta \tilde{C}_{g}^{\text {off }}\right) \otimes\left\langle F^{+\mu} \tilde{F}_{\mu}^{+} \backslash \gamma^{\alpha} \gamma_{5}+\frac{l^{\alpha}}{l^{2}} \tilde{A}_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}\right) \gamma_{5}\right] u\left(P_{1}\right)$
Reproduced the known logarithms from literature

$$
\tilde{\kappa}_{q g}(\hat{x}, \hat{\xi})=\frac{2 \hat{x}-1-\hat{\xi}^{2}}{2\left(1-\hat{\xi}^{2}\right)^{2}} \ln \frac{\hat{x}-1}{\hat{x}}-\frac{\hat{x}-\hat{\xi}}{\left(1-\hat{\xi}^{2}\right)^{2}} \ln \frac{\hat{x}-\hat{\xi}}{\hat{x}}-(\hat{x} \rightarrow-\hat{x})
$$

Ji, Osborne; Belitsky, Mueller

Imprint of Anomalies in QCD Compton scattering

Antisymmetric part of Compton amplitude

$$
-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \times T_{\mu \nu}^{\text {asym }} \approx \frac{1}{2} \frac{\alpha_{s}}{2 \pi}\left(\sum_{f} e_{f}^{2}\right) \bar{u}\left(P_{2}\right)\left[\left(\tilde{\kappa}_{q g} \ln \frac{Q^{2}}{-l^{2}}+\delta \tilde{C}_{g}^{\text {off }}\right) \otimes\left\langle F^{+\mu} \tilde{F}_{\mu}^{+}\right) \gamma^{\alpha} \gamma_{5}+\frac{l^{\alpha}}{l^{2}} \tilde{A}_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}\right) \gamma_{5}\right) u\left(P_{1}\right)
$$

$$
\text { Imaginary part of pole term (} \xi=0 \text {) in agreement with Andrey \& Raju }
$$

Anomalous coefficient function:

Twist-4 GPD:

$$
\tilde{\mathcal{F}}\left(x, l^{2}\right)=\frac{i P^{+}}{\bar{u}\left(P_{2}\right) \gamma_{5} u\left(P_{1}\right)} \int \frac{d z^{-}}{2 \pi} e^{\left.i x P^{+} z^{-}\left\langle P_{2}\right| F_{a}^{\mu \nu}\left(-z^{-} / 2\right) \tilde{F}_{\mu \nu}^{a}\left(z^{-} / 2\right)\left|P_{1}\right\rangle\right)}
$$

$$
\tilde{A}_{g}^{\text {anom }}=\frac{8 T_{R}}{x} \frac{(1-\hat{x}) \ln \frac{\hat{\hat{x}}-1}{x}+(\hat{x}-\hat{\xi}) \ln \frac{\hat{x}-\hat{\xi}}{\hat{x}}-(\hat{x} \rightarrow-\hat{x})}{1-\hat{\xi}^{2}}
$$

(Non-local) chiral anomaly manifests itself in high energy scattering amplitude

Imprint of Anomalies in QCD Compton scattering

Antisymmetric part of Compton amplitude

The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)
$-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \times T_{\mu \nu}^{\text {asym }}=\frac{1}{2} \sum_{f} e_{f}^{2} \bar{u}\left(P_{2}\right)\left[\gamma^{\alpha} \gamma_{5}\left(\tilde{H}_{f}\left(x_{B}, \xi, l^{2}\right)+\tilde{H}_{f}\left(-x_{B}, \xi, l^{2}\right)\right)+\frac{l^{\alpha} \gamma_{5}}{2 M}\left(\tilde{E}_{f}^{\text {bare }}\left(x_{B}, \xi, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, \xi, l^{2}\right)\right)\right] u\left(P_{1}\right)$

Twist-2 GPDs to all orders
(Non-local) chiral anomaly manifests itself in high energy scattering amplitude \& apparently breaks QCD factorization

Imprint of Anomalies in QCD Compton scattering

Antisymmetric part of Compton amplitude

$$
-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \times T_{\mu \nu}^{\text {asym }} \approx \frac{1}{2} \frac{\alpha_{s}}{2 \pi}\left(\sum_{f} e_{f}^{2}\right) \bar{u}\left(P_{2}\right)\left[\left(\tilde{\kappa}_{q g} \ln \frac{Q^{2}}{-l^{2}}+\delta \tilde{C}_{g}^{\text {off }}\right) \otimes\left\langle F^{+\mu} \tilde{F}_{\mu}^{+}\right\rangle \gamma^{\alpha} \gamma_{5}-\frac{l^{\alpha}}{l^{2}} \tilde{A}_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}\right) \gamma_{5}\right] u\left(P_{1}\right)
$$

Anomalous contribution to GPD \tilde{E} at one loop

The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

$$
\left.\left.-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \times T_{\mu \nu}^{\text {asym }}=\frac{1}{2} \sum_{f} e_{f}^{2} \bar{u}\left(P_{2}\right)\left[\gamma^{\alpha} \gamma_{5}\left(\tilde{H}_{f}\left(x_{B}, \xi, l^{2}\right)+\tilde{H}_{f}\left(-x_{B}, \xi, l^{2}\right)\right)+\frac{l^{\alpha} \gamma_{5}}{2 M}\right) \tilde{E}_{f}^{\text {bare }}\left(x_{B}, \xi, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, \xi, l^{2}\right)\right)\right] u\left(P_{1}\right)
$$

$$
+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}\left(1 / Q^{2}\right)
$$

(Non-local) chiral anomaly manifests itself in high energy scattering amplitude \& apparently breaks QCD factorization

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Perturbative pole in GPD

Same pole in one-loop calculation!

Perhaps not an ad hoc argument!

Imprint of Anomalies in QCD Compton scattering

Antisymmetric part, Elusive pole

ONE-LOOP QCD CORRECTIONS TO DEEPLY-VIRTUAL COMPTON SCATTERING: THE PARTON HELICITY-INDEPENDENT CASE

Xiangdong Ji and Jonathan Osborne
Predictions from conformal algebra for the
deeply virtual Compton scattering.
Anomalous contribution to GPD \tilde{E} at one loop
Xiangdong Ji and Jonathan Osborne
Predictions from conformal algebra for the
deeply virtual Compton scattering. deeply virtual Compton scattering.

NLO Corrections to Deeply-Virtual Compton Scattering *
L. Mankiewicz ${ }^{\dagger a}$, G. Piller ${ }^{a}$, E. Stein ${ }^{b}$, M. Vänttinen ${ }^{a}$ and T. Weigl ${ }^{a}$

A.V. Belitsky D. Müller
Osborne (1998)
Osborne (1998)
chiral anomaly manifests itself in high energy scattering amplitude \&

Twist-2 GPDs

NLO corrections to timelike, spacelike and double deeply virtual Compton scattering.

Imprint of Anomalies in QCD Compton scattering

Elusive pole

Pole was unnoticed in the GPD literature because one typically assumes

$$
l^{\mu}=-2 \xi p^{\mu} \rightarrow t=l^{2}=0
$$

before loop integration
Usual rationale: Corrections supposedly higher twist $\frac{t}{Q^{2}}$

Imprint of Anomalies in QCD Compton scattering

Elusive pole

Pole was unnoticed in the GPD literature because one typically assumes

$$
l^{\mu}=-2 \xi p^{\mu} \rightarrow t=l^{2}=0
$$

before loop integration
Usual rationale: Corrections supposedly higher twist $\frac{t}{Q^{2}}$

However, box diagram is power-divergent in the IR!

Imprint of Anomalies in QCD Compton scattering

Beyond factorization: Fate of anomaly pole

Redefine

Perturbative calculations suggest that massless poles are induced in GPD \tilde{E}
However, we know there are no massless poles in axial form factor (moment of GPD \tilde{E})

$$
g_{P}\left(l^{2}\right)=\int d x \tilde{E}(x) \sim \frac{1}{1}
$$

Imprint of Anomalies in QCD Compton scattering

Antis Beyond factorization: Fate of anomaly pole

Redefine

Postulate that the perturbative pole cancels the pre-existing pole in "bare" GPD:

$$
\tilde{E}_{f}^{\text {bare }}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, l^{2}\right) \approx-\frac{\alpha_{s}}{2 \pi} \frac{2 M}{l^{2}} \tilde{A}_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}, l^{2}=0\right)
$$

Postulate that the "renormalized" GPD integrates to $g_{P}\left(l^{2}\right)$:

$$
g_{P}\left(l^{2}\right)=\sum_{f} \int_{-1}^{1} d x \tilde{E}_{f}\left(x, \xi, l^{2}\right)=\sum_{f} \int_{0}^{1} d x\left(\tilde{E}_{f}\left(x, \xi, l^{2}\right)+\tilde{E}_{f}\left(-x, \xi, l^{2}\right)\right)
$$

rization

Im r iwist 4 GPDS
 malies in QCD Compton scattering

$$
\text { Pole cancellation at } \left.\int d x \quad \text { We find: } \quad \frac{g_{P}\left(l^{2}\right)}{2 M}=-\frac{2 M \Delta \Sigma}{l^{2}}-\frac{2 M \Delta \Sigma}{l^{2}}+\frac{2 M \Delta \Sigma}{l^{2}-m_{\eta^{\prime}}^{2}}\right] \quad \sim \frac{1}{l^{2}-m_{\eta^{\prime}}^{2}}
$$

"We demonstrate that the dynamical interplay between the physics of the anomaly, and that of the isosinglet pseudoscalar $U_{A}(1)$ sector of QCD resolves both problems simultaneously: the lifting of the $\bar{\eta}$ pole by topological mass generation of the η^{\prime} and the cancellation of the anomaly pole"

- Tarasov, Venugopalan

Equivalence with $\overline{\mathrm{MS}}$ scheme

Antisymmetric part of Compton amplitude

$$
\left.\left.\begin{array}{rl}
-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \times T_{\mu \nu}^{\mathrm{asym}} \approx \frac{1}{2} \frac{\alpha_{s}}{2 \pi}\left(\sum_{f} e_{f}^{2}\right) \bar{u}\left(P_{2}\right) & \text { Coefficient function } \\
\delta \tilde{C}_{1}^{g}(\hat{x}, \hat{\xi}) & \left.=-\frac{2 \hat{x}-1-\hat{\xi}^{2}}{\left(1-\hat{\xi}^{2}\right)^{2}} \ln \frac{Q^{2}}{-l^{2}}+\delta \tilde{C}_{g}^{\text {off }}\right)
\end{array}\right) \otimes\left\langle F^{+\mu} \tilde{F}_{\mu}^{+}\right) \gamma^{\alpha} \gamma_{5}+\frac{\hat{l}}{l^{2}} \tilde{A}_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}\right) \gamma_{5}\right] u\left(P_{1}\right) .2 \frac{\hat{x}-\hat{\xi}}{\left(1-\hat{\xi}^{2}\right)^{2}} \ln \frac{\hat{x}-\hat{\xi}}{\hat{x}} .
$$

After subtracting IR singularities and finite terms, $t \neq 0$ regularization is equivalent to $\overline{\mathrm{MS}}$ scheme

This means that the result can be smoothly connected to the regime $t \sim \Lambda_{\mathrm{QCD}}^{2}$ as considered in the works by Collins, Freund; Ji, Obsborne

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

We explored the physics of anomaly in DVCS using Feynman-diagram approach

Box diagram ematics $\left(l=p_{2}-p_{1}\right)$:

FIG. 1: Diagrams for the subprocess $\gamma^{*} g \rightarrow \gamma^{*} g$ in Compton scattering.

by infra-red pole

Imprint of Anomalies in QCD Compton scattering

Quark-channel diagrams in DVCS

Example: Antisymmetric case

No pole!

Imprint of Anomalies in QCD Compton scattering

Quark-channel diagrams in DVCS

Example: Antisymmetric case

Reproduced the known logarithms from literature

$$
\tilde{\kappa}_{q q}(\hat{x}, \hat{\xi})=\frac{3}{2(1-\hat{x})}+\frac{\hat{x}^{2}+1-2 \hat{\xi}^{2}}{\left(1-\hat{\xi}^{2}\right)(1-\hat{x})} \ln \frac{\hat{x}-1}{\hat{x}}-\frac{(\hat{x}-\hat{\xi})\left(1+\hat{x}^{2}+2 \hat{x} \hat{\xi}\right)}{\left(1-\hat{x}^{2}\right)\left(1-\hat{\xi}^{2}\right)} \ln \frac{\hat{x}-\hat{\xi}}{\hat{x}}-(\hat{x} \rightarrow-\hat{x})
$$

Imprint of Anomalies in QCD Compton scattering

Quark-channel diagrams in DVCS

Example: Antisymmetric case

Imprint of Anomalies in QCD Compton scattering

Quark-channel diagrams in DVCS

It looks like factorization is broken due to the unexpected double, single IR poles

But, when you compute GPD itself, you find the same double, single IR poles! These poles can be systematically absorbed into GPD

Factorization restored

Unexpected double IR pole

Summary

- Off-forwardness is an alternative factorization scheme that clarifies the physics of anomaly (More physical than other schemes.)
- Clarified QCD factorization for the first time within $\Lambda_{\mathrm{QCD}}^{2} \ll t \ll Q^{2}$ regime: Crucial topic for ongoing \& future experiments including at EIC
- Novel connection between twist 2 \& twist $\mathbf{4}$ sectors at the density level due to anomaly

Imprints of chiral \& trace anomalies in GPDs:

Profound physical implication of anomaly poles:
Touches questions on mass generations, Chiral symmetry breaking, ...

