

Probing nucleon spin structure

- How does QCD generate the spectrum and structure of conventional and exotic hadrons?
- How do the mass and spin of the nucleon emerge from the quarks and gluons inside and their dynamics?
- How are the pressure and shear forces distributed inside the nucleon?
- How does the quark-gluon structure of the nucleon change when bound in a nucleus?
- How are hadrons formed from quarks and gluons produced in high-energy collisions?

Disclaimer: the references and results in this talk are not exhaustive. Sorry if I overlooked your recent result, represented it wrongly, or did not cite you. Please reach out, criedl AT illinois DOT edu

Lessons from the first DIS experiments (SLAC-MIT late 1960's)

- There are two structure functions (F_{1}, F_{2}) parameterizing the "QCD non-perturbative structure" of the unpolarized spin- $1 / 2$ nucleon.

- The structure functions can be expressed in terms of quark longitudinall-momentum probability distriilbutions $q(x)$.

$$
F_{2}(x)=x \cdot \sum_{q, \bar{q}} e_{q}^{2}(q(x)+\bar{q}(x))
$$ \Rightarrow parton distribution functions (PDFs)

- $F_{2}\left(x, Q^{2}\right)$ is in first order independent of Q^{2} (scaling) \Rightarrow nucleons have a substructure of point-like constituents.
- The point-like constituents of the proton have spin- $1 / 2$ (quarks).

Experiments with nuclear and/or lepton polarization

- HERMES at DESY (1995-2007)
- Self-polarized 27.6 GeV electrons and positrons in HERA storage ring
- Pure L- and T-polarized gas targets

- COMPASS at CERN (2002-2022)
- Secondary and tertiary beams (M2 SPS beam line). $160 / 200 \mathrm{GeV}$ muons polarized via pion decay
- Solid-state L- and T-polarized targets (ammonia and deuterated lithium)

BRDDKHMNEN

NATIONAL LABORATORY

- sPHENIX (2023-2025), STAR (2000-2025), PHENIX (2000-2015) at RHIC / BNL
- Collisions of L- and T-polarized proton beams (pp \& pA) $V_{\mathrm{s}}=200,500 / 510 \mathrm{GeV}$
- Optically pumped ion source (OPPIS)

clos SCLD

Jefferson Lab

Quark spin contribution to the nucleon spin

- Measurements with longitudinal nucleon polarization at DESY, CERN and SLAC
- Need additional structure functions if targets and/or beams are polarized. Measurement of a spin asymmetry allows accessing information about the spin-dependent structure function.

- From measurements related to the spim structure function $g_{1}\left(x, Q^{2}\right)$ at fixed-target experiments at DESY, CERN and SLAC, and a full QCD analysis, the quark spin contribution to the spin of the proton was determined to be $\Delta \Sigma \approx 1 / 4 \ldots 1 / 3$.

Global spin structure function measurements

Gluon spin contribution to the nucleon spin

- Measurements with longitudinal polarization at RHIC - pp accesses directly gluonic subprocesses at leading order.
- Last LL RHIC data collected 2013 \& 2015.

Possible production channels:

- Charged and neutral pions
- Isolated direct photon
- Inclusive jet
- Dijets
- From global analysis of longitudinal double-spin asymmetries: $\Delta \mathrm{G} \approx 20 \%$ (\& indication there is more at lower x)

$$
\int_{0.05}^{1} d x \Delta g=0.22 \pm 0.03
$$

DSSV (2019), PRD 100114027
White paper of the RHIC cold QCD program

Proton spin puzzle \& nucleon tomography

- Spin decomposition of the proton: $1 / 2=1 / 2 \Delta \Sigma+\Delta G+\mathcal{L}$
- Experimental results from DIS and pp experiments \& global QCD analysis:
- The quark spins contribute $1 / 4$ to $1 / 3$ to the spin of the proton.
- The gluon spins contribute some positive amount in the currently covered experimental range.
- Where is the remaining proton spin coming from? Parton orbital angular momentum?

Outline－Probing nucleon spín structure

IIntroduction

\square Longitudinal DIS，structure functions，\＆PDFs
\square Spin－polarized experiments
\square Proton spin puzzle \＆hadron tomography
口TMIDs
\square Nucleon TMD structure and spin－orbit correlations
－TMD universal description
－Sivers TMD PDF in SIDIS and modified universality
－Gluon correlators \＆Sivers TMD PDF
\square Sivers effect in di－jet production
－Collins FF in ee and Collins asymmetry in pp \＆SIDIS
－Di－hadron fragmentation function in pp and SIDIS
－Other spin－dependent fragmentation functions in SIDIS

口GPDs

－Hard exclusive reactions
－Chiral－even GPDs \＆DVCS asymmetries
－Exploring Compton form factors
－Parton orbital angular momentum \＆gluon GPDs
－Chiral－odd GPDs \＆vector mesons
－Transition DAs \＆transition GPDs
口Outlook \＆summary

TMD structure of the nucleon

			Taking into account parton intrinsic transverse momentum, 8 TMD PDFs are needed for a full description of nucleon structure (@leading order), some of which encode spin-orbit correlations.		
N^{q}	U		L		
U	number density				ulders
L			helicity		ear-L
	Sivers		$\begin{aligned} & \text { iian-Mulders } \\ & \text { rm-gear-T) } \end{aligned}$	transversity	pretzelosity

collinear
chiral-odd
naive time-reversal odd

Observables to probe TMD universality

Transverse spin asymmetries have common origin - simultaneous description across different collision species possible.

> e.g. [Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (JAM Collaboration), PRD 102, $054002(2020)$]

Two complementary but related theoretical descriptions, depending on what is reconstructed experimentally

- TMD framework - measure 2 scales with $p_{\mathrm{T}} \ll Q$; SIDIS, DY, W/Z, dijets, hadrons in jets
- Collinear higher-twist (HT) framework - measure 1 scale with $p_{\mathrm{T}} \approx Q$; single inclusive particle production in pp (particle or jet p_{T}); spin asymmetries from quantum mechanical interference of multi-parton states ($\rightarrow \mathrm{qgq}$ and ggg correlators)

The Sivers sign switch - modified TMD universality

COMPASS Sivers amplitude in $\pi-\mathrm{p}^{\uparrow} \rightarrow \mu \mu \mathrm{X}$

HERMES vs. COMPASS Sivers amplitude in SIDIS

STAR: A_{N} in $\mathrm{p}{ }^{\uparrow} \mathrm{p} \rightarrow \mathrm{W}^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\mathrm{v}$

STAR new 2017 data

[STAR, AUM2021]

[^0]11

Modified universality concept of Sivers \& Boer-Mulders TMDs. The experimental data tend to support the Sivers sign switch, albeit still within large experimental uncertainties.

Important test of TMDQCD framework, predicted due to the gauge invariance of QCD.
[STAR arXiv:2308.15496]

EINN2023, November 1, 2023

PHENIX isolated direct-photon
[PHENIX PRL 127, 162001 (2021)]

PHENIX pion

[PHENIX PRD 103 (2021) 5, 052009]

RHIC midrapidity measurements sensitive to tri-gluon higher-twist correlation functions \leftrightarrow gluon Sivers TMD
no signals, at high precision

PHENIX eta \& nuclear

PHENIX open heavy flavor

Consistent with expectation from
Burkardt sum rule over parton transverse momenta, which
leaves little room for gluon k_{T}

[^1]
First observation of the Sivers effect in di-jet production

Di-jet production in pp^{\uparrow} directly probes average intrinsic quark and gluon transverse momenta, $<\boldsymbol{k}_{\mathbf{T}}>$, via the asymmetry of the spin-dependent tilt of di-jet opening angle, closely tied to transv. mom. imbalance

STAR pp ${ }^{\uparrow} \rightarrow \mathrm{j}_{1 \mathrm{j}_{2}} \mathrm{X}, 2012$ \& 2015 data

Jet charge tagging to create u- and d-quark enhanced categories

$\left\langle k_{T}^{u}\right\rangle \sim+19.3 \pm 7.6$ (stat.) ± 2.6 (syst.) $\mathrm{MeV} / \mathrm{c}$
$\left\langle k_{T}^{d}\right\rangle \sim-40.2 \pm 23.0 \pm 9.3 \mathrm{MeV} / \mathrm{c}$
Sivers partonic $<k_{\mathrm{T}}>$ values for u- and d-quarks of opposite sign \& similar magnitude, for sea quarks and gluons (combined) \sim zero.
\leftrightarrow SIDIS

$$
Q=\sum_{\left|p^{t r a c k}\right|>0.8 G e V / c} \frac{\left|p^{t r a c k}\right|}{\left|p^{j e t}\right|} \cdot q^{t r a c k}
$$

More data being analyzed incl. forward upgrade

Collins fragmentation function in $\mathrm{e}^{+} \mathrm{e}^{-} \&$ Collins asymmetry in PP

- Collins effect: spin-dependent fragmentation of a transversely polarized parton into a final-state hadron \rightarrow azimuthal modulations of hadron yields (thrust or jet axis)
- In pp \& SIDIS generated by the coupling of the Collins FF to the transversity PDF
new STAR $\mathrm{pp}^{\uparrow} \rightarrow$ jet $\mathrm{h}^{ \pm} \mathrm{X}$ (500 GeV midrapidity)

e+e- annihilation
provides cleanest
environment to
access to Collins FF

Belle $\left.\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2}\right|_{\text {back-to-back }} \mathrm{X}$

[Belle (H. Li, A. Vossen et al.) PRD 100, 092008 (2019)]

Tests of TMD universality, factorization breaking (texpected for hadronic interactions) and evolution

$$
\begin{array}{l|l}
\operatorname{Jet} x_{T}\left(2 p_{T} / \sqrt{s}\right) & \text { Also kaons and protons }
\end{array}
$$

Collins asymmetry and transversity TMD PDF in SIDIS

HERMES \& COMPASS Collins asymmetries in $\ell \mathrm{N}^{\uparrow} \rightarrow \ell \mathrm{h}^{ \pm} \mathrm{X}$

[HERMES JHEP 12 (2020) 010

> Mirror symmetry for $\pi^{+} \& \pi^{-}: u$ - and $d-$ quark transversity have \sim equal magnitude \& opposite signs.

- d-quark transversity PDF less constrained given the u-quark dominance of many of the processes used in the global fits.
- Recent COMPASS 2022 transversity run on the deuteron will improve the experimental precision on the proton's tensor charge, $\mathrm{g}_{\mathrm{T}}=\delta_{\mathrm{u}}-\delta_{\mathrm{d}}$, by a factor of ~ 2.
- Further prior-to-EIC measurements of Collins asymmetries: STAR with forward upgrade, sPHENIX, SpinQuest, JLab12/SoLID, ...
- Alternative method to access transversity: measure hyperon transverse polarization, which may have been transferred from struck quark
- COMPASS and STAR. Hyperon polarization also measured in unpolarized and longitudinally polarized settings at LHCb and CLAS12, resp.

Di-hadron fragmentation function $(h+h-)$ in Pp and SIDIS

Transversity PDF coupled to
interference, or di-hadron,
fragmentation function (collinear) in
SIDIS \& pp as complementary probe
of transversity PDF
$\&$ independent measurement to e+e-

COMPASS di-hadron asymmetry in SIDIS

Interference $\mathrm{FF} \approx$ $1 / 2 \cdot\left(\right.$ Collins $\left.\left[h^{+}\right]+(-1) \cdot \operatorname{Collins}\left[h^{-}\right]\right)$ hints to common physical origin for Collins \& IFF

Other spin-dependent fragmentation functions in SIDIS

COMPASS Collins asym. in ρ^{0} production on p^{\uparrow}

Fragmentation function $\boldsymbol{H}_{1 L L}$ describing fragmentation of quarks in vector mesons. Investigate
the different Collins mechanisms of spin-1 vector mesons vs. pseudoscalar mesons (ordinary Collins FF).

CLAS \& CLAS 12 higher-twist di-hadron BSA
First empirical evidence of a nonzero parton helicity-dependent di-pion fragmentation function G^{\perp} : equivalent to the Collins FF for two pions.

[CLAS12 / T. Hayward PRL 126, 152501 (2021)] also: [CLAS / M. Mirazita PRL 126, 062002 (2021)]

Longitudinal Spin Transfer along \vec{P}

[CLAS12 / M. McEneaney at SPIN 2023] z

CLAS(12), HERMES and COMPASS HT singlehadron SIDIS beam-spin asymmetries - sizeable recent asymmetries from unpolarized target and longitudinally polarized lepton beam [backup].

Fracture functions \leftrightarrow target fragmentation

 region: final-state hadrons also form from the leftover target remnant, the partonic structure of which is defined by fracture functions. Complementary approach to understand SIDIS production [т. Hayward, н. Avakian at SPIN 2023].
Outline - Probing nucleon spín structure

IIntroduction

\square Longitudinal DIS, structure functions, \& PDFs
\square Spin-polarized experiments
\square Proton spin puzzle \& hadron tomography

■TMDs

\square Nucleon TMD structure and spin-orbit correlations
■TMD universal description
\square Sivers TMD PDF in SIDIS and modified universality
\square Gluon correlators \& Sivers TMD PDF
\square Sivers effect in di-jet production
\square Collins FF in ee and Collins asymmetry in pp \& SIDIS
\square Di-hadron fragmentation function in pp and SIDIS
$\boxed{\square}$ Other spin-dependent fragmentation functions in SIDIS

口GPDs

- Hard exclusive reactions
- Chiral-even GPDs \& DVCS asymmetries
- Exploring Compton form factors
- Parton orbital angular momentum \& gluon GPDs
- Chiral-odd GPDs \& vector mesons
- Transition DAs \& transition GPDs

口Outlook \& summary

Hard exclusive reactions

exclusive measurement $=$ detection of entire final state (or assumed to be known)
x, ξ : longitudinal momentum fractions of
probed quark

- skewness $\boldsymbol{\xi} \simeq \boldsymbol{x}_{\boldsymbol{B}} /\left(\mathbf{2}-\boldsymbol{x}_{\boldsymbol{B}}\right)$ in Bjorken limit
(Q^{2} large $\& x_{\mathrm{B}}, t$ fixed)
- average mom. x : mute variable, not accessible in DVCS \& DVMP (is not x Bjorken)
t : squared 4-momentum transfer to target
From HERMES \& JLab-6 \& HERA to COMPASS \& JLab12 \& RHIC to the EIC

$$
\ell p \rightarrow \ell p \gamma \quad \ell p \rightarrow \ell p M
$$

Deeply Virtual Compton
Scattering (DVCS)
Deeply Virtual Meson Production (DVMP)

Standard channels to access generalized parton distributions

Different exclusive final-state particles allow probing different GPDs

4 chiral-even (conserve quark helicity) 4 chiral-odd GPDs (flip quark helicity) \rightarrow connection with chiral-odd TMDs

Chiral-even GPDs from deeply virtual Compton scattering (DVCS)

time-like Compton scattering,
TCS = time-reversal symmetric process of DVCS.

CLAS12 (P. Chatagnon et al.), PRL 127, 262501 (2021)

In DVCS, the experimentally accessed quantity is a complex Compton Form Factor:

$$
\mathcal{H}(\xi, t)=\mathcal{P} \int_{-1}^{+1} \mathrm{~d} x \frac{H(x, \xi, t)}{x-\xi}-i \pi H(\xi, \xi, t)
$$

asymmetries

CLAS12 TCS	forward-backward	photon circular
1st ever	asymmetry	polarization
measurement		asymmetry

Exploring Compton FFs \& gravitational FFs

\checkmark Unmuting $\boldsymbol{x}(\mathbf{x} \neq \pm \xi$ line) via Single Diffractive Hard Exclusive Processes (SDHEP), e.g.,

- double DVCS. Small x-section \& requires muon ID. LOIs: CLAS12 upgrade, SOLID@ Hall A
- exclusive photoproduction - possibility @Hall D
[J.-W. Qiu, Z. Yu, arXiv.org:2305.15397]
[Pedrak, Pire, Szymanowski, Wagner, PRD 96 (2017) 7, 074008]
\downarrow D-term $D(t)$: related to shear forces and radial distribution of pressure inside the nucleon

$$
\mathcal{R} e \mathcal{H}(\xi, t)=\mathcal{P} \int_{-1}^{+1} \mathrm{~d} x \frac{\operatorname{Im} \mathcal{H}(x, t)}{x-\xi}+D(t)
$$

gravitational form factors (GFFs) of the proton

- matrix elements of QCD energy-momentum tensor (EMT)
- related to mass; angular momentum; shear force \& pressure

JLab DDVCS

CLAS DVCS - Linked to GPDs via x-moment

GPD E and parton orbítal angular momentum

Ji sum rule links GPD E to parton orbital angular momentum (see next slide

- connection with Sivers TMD PDF \& spin-orbit correlations)

$$
J_{\mathrm{q}}=\frac{1}{2} \lim _{t \rightarrow 0} \int_{-1}^{1} \mathrm{~d} x x\left[H^{\mathrm{q}}(x, \xi, t)+E^{\mathrm{q}}(x, \xi, t)\right]
$$

[Ji, PRL 78 (1997) 610]

- CLAS12: DVCS on the neutron $\left(\mathrm{LD}_{2}\right.$ target with detection of active neutron), preliminary results (A. Hobart)
- CLAS12: on the transversely polarized proton, data to be taken (so far available data are from HERMES)
- All so-far discussed GPDs were quark GPDs

STAR excl. J/Psi $\boldsymbol{A}_{\mathbf{N}}$ in UPC, gluon GPD E

- STAR: exclusive J/Psi production in ultra-peripheral collisions (UPC)
\rightarrow gluon GPD E. Future new data with forward upgrade

$t=\Delta^{2}$

Deeply virtual meson production

N	U	\mathbf{L}	\boldsymbol{T}	collinear U chiral-odd
\boldsymbol{H}		$\overline{\boldsymbol{E}}_{\boldsymbol{T}}$	BM	

Deeply virtual meson production allows access to higher-twist chiral-odd GPDs, which are related to TMD PDFs (e.g., tranversity). Mesons act as quark flavor filter \& provide different sensitivity to gluon GPDs.

CLAS12 exclusive vector meson beam-spin asymmetries preliminary results for ρ, ω (N. Trotta) and ϕ (B. Clary), gluon GPDs

COMPASS exclusive vector meson transverse target-spin asymmetries

Spin density matrix elements

$$
\frac{d \sigma}{d x_{B} d Q^{2} d t} W\left(x_{B}, Q^{2}, t, \phi, \phi_{S},(\varphi, \vartheta)\right.
$$

Spin density matrix elements describe

 how the spin components of the virtual photon are transferred to the created vector meson, and provide sensitivity to the chiral-odd GPDs $\boldsymbol{H}_{\mathrm{T}}$ and $\overline{\boldsymbol{E}}_{\mathrm{T}}$.- Provide further constraints on GPD parameterizations beyond cross-section and spinasymmetry measurements
- Test of s-channel helicity conservation (SCHC), $\lambda_{\gamma^{*}}=\lambda_{\mathrm{vm}}$, only SDMEs of classes A\&B are not
 restricted to $=0$ if SCHC. Observed: considerable SCHE in $\gamma^{*}{ }_{\mathrm{T}} \rightarrow \omega_{\mathrm{L}}$ (class C)

COMPASS \& HERMES SDMEs

[ρ^{0} COMPASS EPJC (2023) 83, 924]
[ρ^{0} HERMES EPJC (2009) 62, 659]
[ω COMPASS EPJC (2021) 81, 126] (not shown)

Exclusive pion leptoproduction

Dip at small $|t|$ indicative of large effect by chiral-odd GPD \bar{E}_{T}
[π^{+}CLAS (S. Diehl et al), PLB 839, 137761 (2023)]

CLAS excl. π^{+}beam-spin asymmetries in the backward

Exclusive pion production in the backward allows to study nucleon-to-pion baryonic transition distribution amplitudes
(TDAs), a further generalization of the GPD concept

CLAS12 excl. $\pi^{-} \Delta^{++}$beam-spin asymmetries, first ever data

How does nucleon

 resonant excitation affectits 3D structure?
Information encoded in transition GPDs (8 chiraleven and 8 chiral-odd).

very forward kinematics $\left(-t / Q^{2} \ll 1\right)$ [CLAS12 (S. Diehl et al.), PRL131, 021901 (2023)]

Outline - Probing nucleon spín structure

IIntroduction

\square Longitudinal DIS, structure functions, \& PDFs
\square Spin-polarized experiments
\square Proton spin puzzle \& hadron tomography

ØTMIDs

\square Nucleon TMD structure and spin-orbit correlations
■TMD universal description
\square Sivers TMD PDF in SIDIS and modified universality
\square Gluon correlators \& Sivers TMD PDF
\square Sivers effect in di-jet production
$\boxed{\square}$ Collins FF in ee and Collins asymmetry in pp \& SIDIS
\square Di-hadron fragmentation function in pp and SIDIS
$\boxed{\square}$ Other spin-dependent fragmentation functions in SIDIS

VGPDs

$\boxed{\square}$ Hard exclusive reactions
■ Chiral-even GPDs \& DVCS asymmetries
\square Exploring Compton form factors

- Parton orbital angular momentum \& gluon GPDs

■ Chiral-odd GPDs \& vector mesons
■ Transition DAs \& transition GPDs
口Outlook \& summary

Selected near future - before the EIC

- JLab 12 GeV high-luminosity facility:

- Has started experimental program
- New generation of precision data for valence quarks to come from CLAS12, SoLID, et al.
- SpinQuest / E1039 at FNAL (2024++):
- Transversely polarized NH3/ND3 target with E906 spectrometer
- First polarized DY experiment with proton beam
- Sivers \& transversity TMDs of sea quarks.

- LHCspin at CERN, fixed trans.polarized H2 \& D2 targets with LHCb as forward spectrometer, >2025, https://inspirehep.net//iterature/1821190

- STAR cold QCD with forward upgrade at RHIC:
- Tracking system of silicon \& small TGC
- Forward electromagnetic \& hadronic calorimetry, $2.5<\eta<4$
- midrapidity: improve statistics of Sivers via dijet \& W/Z, Collins via hadrons in jets, GPD E via J/Psi UPC
- forward rapidity: TMDs at high-x \& GPD E

STAR

RHIC cold QCD program with

$2024 \mathrm{pp} \uparrow{\sqrt{\mathrm{SNN}_{\mathrm{N}}}=200 \mathrm{GeV} \text { run }}$
[Aschenauer, Barish, Bazilevsky, et al.,arXiv:2302.00605]

- sPHENIX cold QCD at RHIC:
- Optimized for jets, heavy-flavor measurements and displaced vertices with MAPS-based vertex tracker
- Gluon Sivers TMD PDF via A_{N} in single-photon \& heavy flavor
- Di-hadron IFF / Collins asymmetry \& transversity PDF
via hadron-charge tagging \& hadron-in-jet
- AMBER:
- Emergence of hadron mass, pion and kaon PDFs

7000BER
aratus for Meson and Baryon
Experimental Research proton and meson radius

[^2]

sPHENIX ~ preparing for transversely polarized pp in 2024

- Commissioning 2023 with brand new experiment at RHIC IP 8
- Optimized for jets, heavy-flavor measurements \& displaced vertices with MAPS-based vertex tracker
- Gluon Sivers TMD PDF via A_{N} in singlephoton \& heavy flavor production
- Di-hadron IFF / Collins asymmetry \& transversity PDF via hadron-charge tagging \& hadrons-in-jets

Expected stat uncertainties for isolated photon \& heavy-flavor production

First pi0s in the EMCal

Summary - Probing nucleon spin structure

Experiments at BNL, JLab, CERN, DESY, RIKEN, Fermilab, et al. unravel proton and nucleus structure

Experimental (and in some cases lattice) data serve as input to global fits

The spins of quarks and gluons contribute to the proton's spin and there is indication they also possess orbital angular momentum. The nucleon is explored via tomographic images in transverse-momentum- and position-space using data from various types of scattering experiments.

The Electron Ion Collider will be the ultimate tool to precisely map the rich spin- and multi-dimensional structure of nucleons and nuclei
from low- to high $x_{\text {Bjirken }}$.

- Skipped probably many results - e.g., unpolarized Boer-Mulders TMD
- Some of it covered in backup
- TMD Handbook, R. Boussarie et al. for the TMD Collaboration, arXiv:2304.03302
- The RHIC Cold QCD Program (White Paper) - Contribution to the NSAC Long-Range Planning process, E.C. Aschenauer et al. (RHIC SPIN collaboration), arXiv:2302.00605
- The US Long Range Plan for Nuclear Science released in October 2023 https://nuclearsciencefuture.org/
- CR's 2022 arXiv https://arxiv.org/abs/2204.03684

Extra slides

Going polarized at fixed-targets experiments

- HERMES at (1995-2007)

- Self-polarized 27.6 GeV electrons and positrons in HERA storage ring
- Pure L- and T-polarized gas targets

Polarization achieved by Dynami Nuclear Polarization (DNP)

- dilution refrigerator: $\sim 60 \mathrm{mK}$
dipole magnet (transverse): 0.5 T - solenoid (longitudinal): 2.5T - microwave system

Polarization determined with Nuclear Magnetic Resonance (NMR)

- COMPASS at (2002-2022)

- Secondary and tertiary beams (M2 SPS beam line). Muons polarized via pion decay
- Solid-state L- and T-polarized targets

COMPASS experimental setup and future

The 2022 data-taking campaign was the last run of the COMPASS experiment, and the last of the exploratory study of the nucleon structure

COMPASS changed from "data taking" to "data analysis" and will continue for several years

The spectrometer will stay in the experimental hall and is being upgraded and run by the AMBER Collaboration

COMPASS polarized solid-state target

- Polarization achieved by Dynamic Nuclear Polarization (DNP)
- dilution refrigerator: $\sim 60 \mathrm{mK}$
- dipole magnet (transverse): 0.5T
- solenoid (longitudinal): 2.5 T
- microwave system
- Polarization determined with Nuclear Magnetic Resonance (NMR)

$\mathbf{N H}_{3}$: ammonia beads, ${ }^{6}$ LiD: deuterated lithium dilution factor $\sim 0.22(\mathrm{NH} 3), 0.5(\mathrm{LiD})$ 34

Collisions with polarized protons at RHIC

- Relativistic heavy ion collider - RHIC
- Collisions of L- and T-polarized protons, $\sqrt{s}^{s}=200,500 / 510 \mathrm{GeV}$

BROOKHRNEN
NATIONAL LABORATORY

- Optically pumped ion source (OPPIS) that transfers electron polarization to protons. Siberian Snakes to overcome the effects of depolarizing resonances.

Accessing intrinsic transverse parton momenta in SIDIS

detect in addition to scattered lepton also hadron with
 energy z and transverse momentum $\boldsymbol{P}_{\mathrm{T}}$

$\boldsymbol{k}_{\mathbf{T}}$ intrinsic transverse
quark momentum

TMD backup

TMD measurements - a huge experimental effort

Transverse single-spin asymmetries

Transverse spin asymmetries have common origin - simultaneous description across different collision species possible.
e.g. [Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (JAM Collaboration), PRD 102, 054002 (2020)]

Two complementary but related theoretical descriptions, depending on what is measured (reconstructed experimentally)

- TMD framework when transverse momentum is probed - measure 2 scales with $p_{\mathrm{T}}<Q$; SIDIS, DY, W/Z, dijets, hadrons in jets
- Collinear higher-twist (HT) framework
- Measure 1 -scale with $p_{\mathrm{T}} \approx Q$; single inclusive particle production in pp (particle or jet p_{T})
- spin asymmetries from quantum mechanical interference of multiparton states ($\rightarrow \mathrm{qgq}$ and ggg correlators)

Spin-orbit correlations in the proton
 $\vec{S} \cdot\left(\overrightarrow{p_{1}} \times \overrightarrow{p_{2}}\right)$

- If TMDs describing strength of spin-orbit correlations are non-zero: may in certain models be connected to parton orbital angular momentum (OAM).
- No quantitative relation between TMDs \& OAM identified yet.
- Sivers effect: correlation between the nucleon transverse spin \& parton transverse momentum in the transversely polarized nucleon
- The Sivers function was originally thought to vanish (*). A nonzero Sivers function was then shown to be allowed due to QCD final state interactions (soft gluon exchange) in SIDIS between the outgoing quark and the target remnant (**).
- "Chromodynamic lensing" [M. Burkardt, Nucl.Phys.A735:185-199,2004]

(*) [J. C. Collins, Nucl. Phys. B396, 161 (1993)] (**) [S. J. Brodsky et al., Phys. Lett. B530, 99 (2002)]

Collins effect: fragmentation of a transversely polarized parton into a final-state hadron (spin-spin correlation)

Sivers effect

The strength of distortion in transverse-momentum space is proportional to
and is called the Sivers amplitude $f_{1 T}^{\perp q}$
$f_{q / p^{\uparrow}}\left(x, \boldsymbol{k}_{T}\right)=f_{1}^{q}\left(x, \boldsymbol{k}_{T}^{2}\right)$

$$
-f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{T}^{2}\right) \boldsymbol{S} \cdot\left(\frac{\hat{\boldsymbol{P}}}{M} \times \boldsymbol{k}_{T}\right)
$$

PV19 fit using SIDIS data from HERMES, COMPASS and Hall A
[Bacchetta, Delcarro, Pisano, Radici, PLB 827, 136961 (2022)]

$$
\vec{S}_{T} \cdot\left(\widehat{P} \times \vec{k}_{T}\right)
$$

produced final state well after QCD hard interaction (meson, jet, photon, ...)

Semí-inclusive deep-ínelastic scattering cross section

$\mathrm{BM} \otimes$ Collins

KM (worm-gear-T)
\otimes D1
transversity \otimes Collins

$$
\text { pretzelosity } \otimes \text { Collins }
$$

Sivers TMD PDF from SIDIS

HERMES TMD final compendium

Sivers function from COMPASS asym.

[COMPASS NPB 940 (2019) 34]
[Anselmino et al., Phys.Rev. D86 (2012) 014028]
$\checkmark \quad p_{\mathrm{T}}$-weighted asymmetries: direct measurement of TMD $k_{\mathrm{T}}{ }^{2}$ moments that avoids assumptions on shape of k_{T}. Products instead of convolutions of TMDs

Kaon amplitudes
larger than pion
$\substack{\sim \text { Unexpected if u-quark } \\ \text { scattering dominats. } \\ \text { Role of sea quarks? }}$

Kaon amplitudes larger than pion
Unexpected if u-quark Role of sea quarks?

Sivers-TMD sign switch

- d-quark transversity less constrained given the u-quark dominance of many of the processes used in the global fits.
- JAM-22 reduced uncertainties wrt JAM20 due to inclusion of lattice QCD data and Soffer bound.
- COMPASS 22 transversity run on the deuteron will improve the experimental precision on the proton's tensor charge, $g_{T}=\delta_{u}$ δ_{d}, by a factor of ~ 2.
- Further prior-to-EIC measurements of Collins asymmetries include STAR with forward upgrade, sPHENIX, JLab12/SoLID, SpinQuest.
[JAM Collaboration - JAM3D-22, PRDD 106, 034014 (2022)]
- Transversity TMD PDF coupled to interference, or di-hadron, fragmentation function
- 2 collinear observables (DGLAP evolution, not TMD) - complementary probe of transversity TMD
- interference of different channels of the fragmentation process into the twohadron system (interference of S and P states)

Global extraction of transversity from dihadron data:
pion-pair multiplicities in pp needed

[Radici, Bacchetta, PRL 120, 192001 (2018)]

- June - November 2022 with transversely polarized deuteron (${ }^{6} \mathrm{LiD}$) target with almost the same conditions as 2010 proton run.
- Impact on the deuteron SIDIS Collins asymmetry - the 2022 uncertainties are expected to be a factor 2 to 5 smaller.
- Impact on transversity TMD PDF and on tensor charge

$\Omega_{x}: 0.008 \div 0.210$	$\delta_{u}=\int_{\Omega_{\mathrm{x}}} d x h_{1}^{u_{v}}(x)$	$\boldsymbol{\delta}_{\boldsymbol{d}}=\int_{\Omega_{\mathrm{X}}} d x h_{1}^{d}(x)$	$\boldsymbol{g}_{T}=\boldsymbol{\delta}_{\boldsymbol{u}}-\boldsymbol{\delta}_{\boldsymbol{d}}$
present	$0.201 \pm \mathbf{0 . 0 3 2}$	$-0.189 \pm \mathbf{0 . 1 0 8}$	$0.390 \pm \mathbf{0 . 0 8 7}$
projected	$0.201 \pm \mathbf{0 . 0 1 9}$	$-0.189 \pm \mathbf{0 . 0 4 0}$	$0.390 \pm \mathbf{0 . 0 4 4}$

The work will not be over with the COMPASS measurements precise measurements are needed \boldsymbol{Q}^{2} asap, in particular at larger x.

The complementary measurements at Jlab 12 and 20+ will allow for a more precise measurement of the tensor charge and, in the farther future, the EIC.

First look at the COMPASS 2022 data (about 10\%)

COMPASS preliminary, primary vertices

z-vertex

scattered muon azimuthal angle (lab)

Twist-3 tri-gluon correlations - sensitivity \& subprocesses

Subprocess fractions at RHIC energies
for $\mathbf{g g}, \mathbf{q g}, q q+q q$ bar
(leading order hard QCD processes)

A. Mukherjee et al., PRD86,094009

courtesy Z. Chang

A_{N} in the very forward

[PHENIX arXiv:2303.07191]

Smaller A_{N} for $\mathrm{h}+$ at $0.1<x_{\mathrm{F}}<0.2$ in pA
$A_{\mathrm{N}}(\mathrm{h})$ small to zero at $x_{\mathrm{F}}>0$: opposite sign of A_{N} for h - canceled partially

Publication with improved background estimation in preparation. Increase in p_{T} : interference between spin flip and spin non-flip amplitudes (π / a_{1} exchange model [PRD 84 (2011) 114012]

STAR electromagnetic jets
also - neutral pion:
[RHICf PRL 124, 252501 (2020)]
A_{N} increases with p_{T} (for $x_{\mathrm{F}}>0.46-$ RHICf) \& forwardness \& π^{0} isolation (STAR) \& lower γ multiplicity (STAR)
A_{N} from soft processes such as diffractive scattering?

TMD fragmentation function (Collins) from $\mathrm{Pp}^{\dagger} \rightarrow$ jet h$h \times$ - kaons and protons

STAR hadrons in jets (midrapidity)

[STAR PRD 106, 072010 (2022)]

More higher twist in single-hadron SIDIS

CLAS(12), HERMES and COMPASS SIDIS beam-spin asymmetries

- Sizeable recent asymmetries from unpolarized target and longitudinally polarized lepton beam. Expected to be suppressed by $\mathcal{O}(\mathrm{M} / \mathrm{Q})$
- Provides access to so-far poorly known subleading twist-3 TMD PDFs \& fragmentation functions containing information about quark-gluon correlations in the proton and in the hadronization process

■ [CLAS12 / S. Diehl arXiv:2101.03544]
[HERMES PLB $797(2019)$ 134886]
V [CLAS Phys. Rev. D 89, 072011 (2014)]
[COMPASS Nucl. Phys. B 886, 1046 (2014)]

$$
A_{L U}^{\sin \phi}=\frac{\sqrt{2 \epsilon(1-\epsilon)} F_{L U}^{\sin \phi}}{F_{U U, T}+\epsilon F_{U U, L}}
$$

「HERMES PLB 797 (2019) 1348867

SIDIS off longitudinally polarized targets

- COMPASS collected a large amount of L-SIDIS data with unprecedented precision for some amplitudes
$A_{U L}^{\sin \phi_{h}}$
- Q-suppression, higher-twist subleading effects
- Sizable TSA-mixing
- Significant h+ asymmetry, clear z-dependence
- h - compatible with zero
$A_{U L}^{\sin 2 \phi_{h}}$
- Only "twist-2" ingredients
- Additional P_{T}-suppression
- Compatible with zero, in agreement with models
- Collins-like behavior?
$A_{L L}^{\cos \phi_{h}}$
- Q-suppression, higher-twist subleading effects
- Compatible with zero, in agreement with models
- Di-hadron asymmetries (not shown)
B. Parsamyan (for COMPASS) arXiv:1801.01488 [hep-ex]

Accessing intrinsic transverse parton momenta in SIDIS

Azimuthal modulation of hadron yield

> complementary

- Cahn effect $-\cos \phi_{\mathrm{h}}$ modulation purely due to the presence of intrinsic transverse momenta of unpolarized quarks in the unpolarized nucleon.
- No such modulation in the collinear case. Next-to-leading-order effect.

$$
\left\langle k_{T}^{2}\right\rangle_{e f f}=-\frac{Q\left\langle P_{T}^{2}\right\rangle A_{U U}^{\cos \phi_{h}}}{2 z P_{T}}
$$

- Double-Gauss structure in P_{T} spectrum separated at $\sim 1 \mathrm{GeV} / \mathrm{c}$ e.g. Gonzales-Hernandez et al., Phys.Rev.D 98 (2018) 11, 114005

[COMPASS PRD 97, 032006 (2018)]
transverse momenta:
$\boldsymbol{P}_{\boldsymbol{T}}$ final-state hadron (GNS)
$\boldsymbol{k}_{\boldsymbol{T}}$ quark intrinsic
\boldsymbol{p}_{\perp} hadron wrt struck quark

- Allow to gain information about intrinsic quark momentum k_{T} by measuring transverse momentum P_{T} of the produced hadron.
- Important for TMD evolution studies \& comparison between experiments. Intense theoretical work ongoing to reproduce the experimental distributions over a wide energy range.
- In Gaussian approximation, at small values of P_{T}, the number of hadrons is expected to follow:

$$
\begin{gathered}
\frac{\boldsymbol{d}^{\mathbf{2}} \boldsymbol{N}^{h}\left(\boldsymbol{x}, \boldsymbol{Q}^{\mathbf{2}} ; \boldsymbol{z}, \boldsymbol{P}_{\boldsymbol{T}}^{2}\right)}{\boldsymbol{d z} \boldsymbol{d} \boldsymbol{P}_{\boldsymbol{T}}^{\mathbf{2}}} \propto \exp \left(-\frac{\boldsymbol{P}_{\boldsymbol{T}}^{\mathbf{2}}}{\left\langle\boldsymbol{P}_{\boldsymbol{T}}^{\mathbf{2}}\right\rangle}\right) \\
\left\langle P_{T}^{2}\right\rangle=z^{2}\left\langle k_{T}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle
\end{gathered}
$$

- Double Gauss structure in P_{T} spectrum separated at $1 \mathrm{GeV} / \mathrm{c}$ $\rightarrow 2$ different slopes
- Perturbative effects expected to contribute more at high P_{T}
- Likely not sufficient to explain the high $-P_{T}$ trend e.g. Gonzales-Hernandez et al., Phys.Rev.D 98 (2018) 11, 114005
- Hadron multiplicities (not shown)
- p-/p+ and K-/K+ at high z PLB 807 (2020) 135600, K-/K+ at high z PLB 786 (2018) 390
- h PRD 97 (2018) 032006, K isoscalar PLB 767 (2017) 133, $\pi \pm$ and $\mathrm{h} \pm$ PLB 764 (2017) 001

- Normalization: first $\boldsymbol{P}_{\boldsymbol{T}}^{\mathbf{2}}$ bin.
- Different normalization for each bin and charge
- Error bars correspond to the statistical uncertainty only. $\sigma_{\text {syst }} \sim \mathbf{0} .3 \sigma_{\text {stat }}$

Boer-Mulders function and Cahn effect in SIDIS

- The Boer-Mulders function describes the strength of the spin-orbit correlation between
quark spin s_{T} and intrinsic transverse momentum k_{T} :

$$
\vec{s}_{T} \cdot\left(\widehat{P} \times \vec{k}_{T}\right)
$$

- Contributes to $\cos \phi_{h}$ and $\cos \left(2 \phi_{h}\right)$
- Strong kinematic dependences \& interesting differences between positive and negative hadrons, as observed in previous measurements by COMPASS on deuteron and by HERMES (u-quark dominance, opposite signs of Collins FF into $\mathrm{h}+$ and $\mathrm{h}-$)

- Cahn effect

- Contributes to $\cos \phi_{\mathrm{h}}$ only \rightarrow next slide
- Higher-twist beam-spin asymmetry $A_{L U}^{\sin \phi_{h}}=\frac{F_{L U}^{\sin \phi_{h}}}{F_{U U, T}}$ (backup)
- Azimuthal asymmetries for hadron pairs on the

Azimuthal
asymmetries
defined as the ratios
COMPASS preliminary
 unpolarized proton (backup)

- Collins FF for 2 hadrons \& interference fragmentation function

The error bars correspond to the statistical uncertainty only. $\sigma_{\text {syst }} \sim \sigma_{\text {stat }}$ (1D)

Cahn effect and quark intrinsic momentum from SIDIS

- Cahn effect - additional (to BM) $\cos \phi_{\mathrm{h}}$ modulation purely due to the presence of intrinsic transverse momenta of unpolarized quarks in the unpolarized nucleon. No such modulation in the collinear case. Next-to-leadingorder effect.
- Clear signal, strong dependence on P_{T}.

Compatible with zero at high z. In agreement with COMPASS deuteron results.

- Naive expectation

$$
A_{U U \mid C a h n}^{\cos \phi_{p}}=-\frac{2 z P_{T}\left\langle k_{T}^{2}\right\rangle}{Q\left\langle P_{T}^{2}\right\rangle}
$$

- observed trend is however opposite (increase with Q^{2})
- Complementary access to quark intrinsic transverse momentum + other PDFs \& FFs contributions

proton

2016 data

GPD backup

2 most recent JLab DVCS publications - my cheat sheet

left: one of 64 bins accessible only with $\sim 10 \mathrm{GeV}$ beam. Tension in KM15. right: "weighted" and "unweighted" is PARTON ANN. Only part of data set taken is published, already now compatible with JLab 6-Gev

CLAS12 (G. Christiaens et al.),
PRL 130, 211902 (2023)

Selection of exclusive data sample

Selection of exclusive event sample - COMPASS

DVMP without recoil-proton detection: missing energy technique assuming proton mass

Exclusive $\boldsymbol{\rho}^{\mathbf{0}}$ production

 $\mu \mathrm{p}{ }^{(\uparrow)} \rightarrow \mu \mathrm{p} \rho^{0}$with simulated exclusive signal \& SIDIS background

In case of transverse target polarization: additional azimuthal angle φ_{s} defined by direction of transverse target-polarization vector

DVCS with recoil-proton detector (RPD): comparison of proton kinematics measured in RPD vs. expected in spectrometer (from $\mu \gamma$)

+ kinematically complete event reconstruction via kinematic event fitting

Access to CFFs at COMPASS

DVCS

Analysis of azimuthal modulations (HERMES- and JLab-type) on DVCS on the unpolarized proton in progress

$$
=\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\stackrel{\text { DVCS }}{\mathrm{DVCS}}^{\left.\mathcal{T}_{\mathrm{BH}}^{*}+\mathcal{T}_{\mathrm{DVCS}}^{*} \mathcal{T}_{\mathrm{BH}}\right)}+\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}
$$

dominant at small x_{B}
(remainder $\sim 5 \%$ from KM / GK
model)

The DVCS / Bethe-Heitler interference term allows to disentangle $\operatorname{Re}\left(\tau_{\mathrm{DVCS}}\right)$ and $\operatorname{Im}\left(\tau_{\mathrm{DVCS}}\right)$ magnitude and phase of DVCS amplitude $\tau_{\text {DVCS }}$

$$
\mathcal{S}_{C S, U} \equiv \mathrm{~d} \sigma^{ \pm}+\mathrm{d} \sigma^{\leftrightarrows}
$$

$$
\mathcal{D}_{C S, U} \equiv \mathrm{~d} \sigma^{ \pm}-\mathrm{d} \sigma^{\mp}
$$

$\left.\operatorname{Lm}\left(F_{1} \mathcal{H}+\xi\left(F_{1}+F_{2}\right) \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} F_{2} \mathcal{E}\right) \right\rvert\,$
$\operatorname{Re}\left(F_{1} \mathcal{H}+\xi\left(F_{1}+F_{2}\right) \mathcal{H}-\frac{t}{4 M^{2}} F_{2} \mathcal{E}\right)$

$$
\mathcal{A}_{C S, U} \equiv \frac{\mathrm{~d}{\sigma^{ \pm}}^{ \pm}-\mathrm{d} \sigma^{\mp}}{\mathrm{d}{\sigma^{ \pm}}^{ \pm}+\mathrm{d} \sigma^{-}}=\frac{\mathcal{D}_{C S, U}}{\mathcal{S}_{C S, U}}
$$

Spin-independent DVCS cross section \propto

$$
4\left(\mathcal{H} \mathcal{H}^{*}+\tilde{\mathcal{H}} \tilde{\mathcal{H}}^{*}\right)+\frac{t}{M^{2}} \mathcal{E E}^{*}
$$

Sign \& magnitude of $\cos \varphi$ amplitude for beam-charge asymmetry? (changes sign between HERMES and HERA)

Kroll, Moutarde, Sabatié, Eur. Phys. J. C (2013) 73:2278
Test of GPD universality: use DVMP data to constrain GPD parameters

Extraction of pure DVCS yield at COMPASS

$$
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\left(\mathcal{T}_{\mathrm{DVCS}} \mathcal{T}_{\mathrm{BH}}^{*}+\mathcal{T}_{\mathrm{DVCS}}^{*} \mathcal{T}_{\mathrm{BH}}\right)+\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}
$$

BH reference yield:
at small $\left\langle x_{B}\right\rangle=0.0085$

DVCS amplitude:
ϕ-modulations in cross section at medium $\left\langle x_{B}\right\rangle=0.0200$

Transverse imaging: ϕ-integrated cross section at medium $\left\langle x_{B}\right\rangle=0.0630$

Extraction of pure DVCS yield at COMPASS

Transverse imaging of the nucleon

Impact-parameter representation of parton distribution function:
$q^{f}\left(x, \boldsymbol{b}_{\perp}\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \boldsymbol{\Delta}_{\perp} \cdot \boldsymbol{b}_{\perp}} H^{f}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)$
[Burkardt, Int. J. Mod. Phys. A18 (2003) 173]
"spatial parton density = Fourier transform of GPD"
\boldsymbol{b}_{\perp} is the impact parameter,
$\boldsymbol{\Delta}_{\perp}$ is the difference of initial and final transverse momenta,
$\boldsymbol{\Delta}_{\perp}{ }^{2}$ is related to the Mandelstam- t

The differential DVCS cross section allows to probe the transverse extension of partons in the nucleon:

$$
\frac{\mathrm{d} \sigma^{\mathrm{DVCS}}}{\mathrm{~d} t} \propto e^{-b|t|}
$$

3-dim "tomographic images" of the nucleon in longitudinal momentum and transverse position

$$
\mathrm{b}=" t \text {-slope" }=\text { average impact parameter }
$$

Transverse imaging of the nucleon

PDF impact-parameter representation:
$q^{f}\left(x, \boldsymbol{b}_{\perp}\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \boldsymbol{\Delta}_{\perp} \cdot \boldsymbol{b}_{\perp}} H^{f}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)$
[Burkardt, Int. J. Mod. Phys. A18 (2003) 173]
"spatial parton density = Fourier transform of GPD"
\boldsymbol{b}_{\perp} is the impact parameter,
$\boldsymbol{\Delta}_{\perp}$ is the difference of initial and final transverse momenta,
$\boldsymbol{\Delta}_{\perp}{ }^{2}$ is related to the Mandelstam- t

Differential DVCS cross section with " t-slope" = average impact parameter

$$
\frac{\mathrm{d} \sigma^{\mathrm{DVCS}}}{\mathrm{~d} t} \propto e^{-B|t|}
$$

COMPASS DVCS t-slope

- Sea-quark domain between gluons and valence-quarks
- Transverse extension of partons and t-slope B :

$$
\begin{aligned}
& \left\langle r_{\perp}^{2}\left(x_{\mathrm{Bj}}\right)\right\rangle \approx 2\left\langle B\left(x_{\mathrm{Bj}}\right)\right\rangle \hbar^{2} \\
& \sqrt{\left\langle r_{\perp}^{2}\right\rangle}=\left(0.58 \pm 0.04_{\text {stat }}-\left.0.02\right|_{\mathrm{sys}} ^{+0.01} \pm 0.04_{\mathrm{model}}\right) \mathrm{fm}
\end{aligned}
$$

Flavor separation of CFFs_{s}

- Flavor separation of CFFs: u-quark, d-quark
[Benali, Desnault, Mazouz, et al., Nature Physics 16 (2020) 191-198]
with reggeized diquark model (Goldstein, Liuti, et al.)

Hall A neutron DVCS

JLab 6\&12 p \& n DVCS

Preliminary global fits of CFF using NN \& dispersion relation

[^0]: With N3LO theory prediction [PRL 126 (2021) 112002]

[^1]: [PHENIX PRD 107 (2023) 11, 112004]

[^2]: AMBER - see talk by C. Quintans, Thu am

