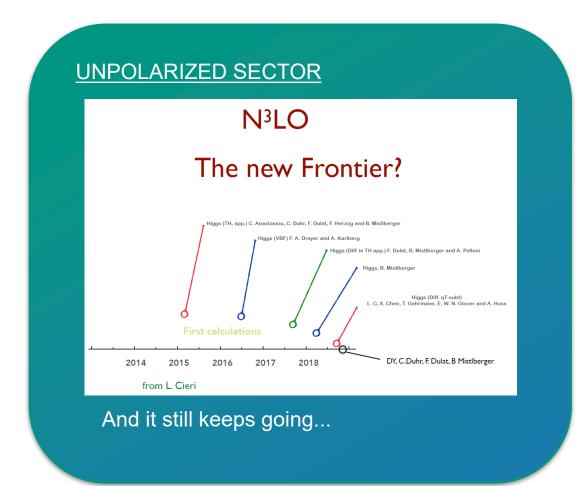


Jet Production in Polarized Deep Inelastic Scattering

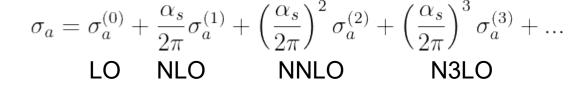

Ivan Pedron

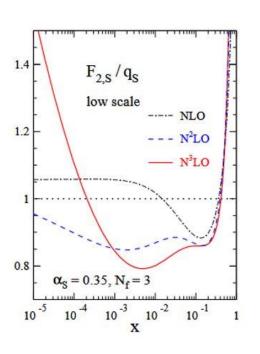
in collaboration with Ignacio Borsa and Daniel de Florian

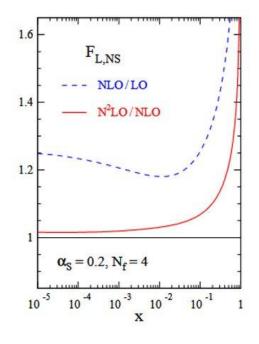
The status of precision QCD (not so long ago)

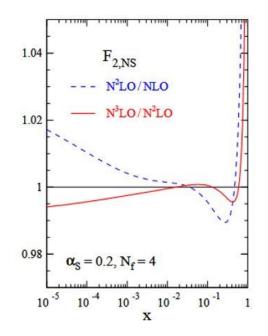
The status of precision QCD (not so long ago)

POLARIZED SECTOR

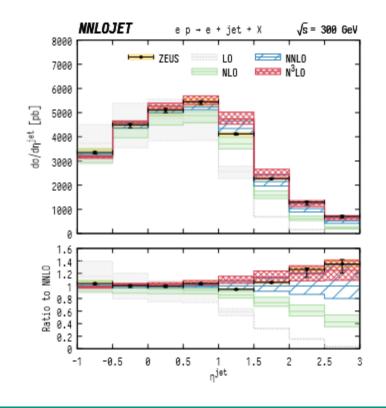

- g1 NNLO van Neerven, Zijlstra ('94)
- NNLO splittings Moch, Vermaseren, Vogt ('14)
- NNLO singlejet DIS Borsa, de Florian, IP ('20)
- NNLO W production Boughezal, Li, Petriello ('21)
- NNLO+ SIDIS (approx.) Abele, de Florian, Vogelsang ('22)
- N3LO g1 Blumlein, Marquard, Schneider, Schönwald ('22)


The need of higher order corrections




Significant correctios even in inclusive observables!!!

Vermaseren, Vogt, Moch ('05)



DIS structure functions

$$\begin{split} W^{i}_{\mu\nu} &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^{2}} \right) \left[F^{i}_{1}(x,Q^{2}) - \frac{h}{2} \ g^{i}_{5}(x,Q^{2}) \right] \\ &+ \frac{\left(p_{\mu} - \frac{p \cdot q}{q^{2}} q_{\mu} \right) \left(p_{\nu} - \frac{p \cdot q}{q^{2}} q_{\nu} \right)}{p \cdot q} \left[F^{i}_{2}(x,Q^{2}) - \frac{h}{2} \ g^{i}_{4}(x,Q^{2}) \right] \\ &- i \epsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha}p^{\beta}}{2p \cdot q} \left[F^{i}_{3}(x,Q^{2}) + h \ g^{i}_{1}(x,Q^{2}) \right], \end{split}$$

The need of higher order corrections

- New partonic channels at higher orders (e.g. gluons in DIS)
- Parton luminosities can produce sizable corrections (interrelation with PDFs)
- QCD jets acquiree internal structure
- Better matching of jets with experiments

Currie, Gehrmann, Glover, Huss, Niehues, Vogt ('18)

Current status of jets in polarized DIS

Status on jet production in polarized DIS:

- Not much interest in fixed-target
- 1jet at NLO (N-jetiness) Boughezal, Petriello, Xing ('18)
- 2jets at NLO (dipoles)

Photon - Borsa, de Florian, IP ('20) NC & CC - Borsa, de Florian, IP ('21)

1jet at NNLO (dipoles + P2B)

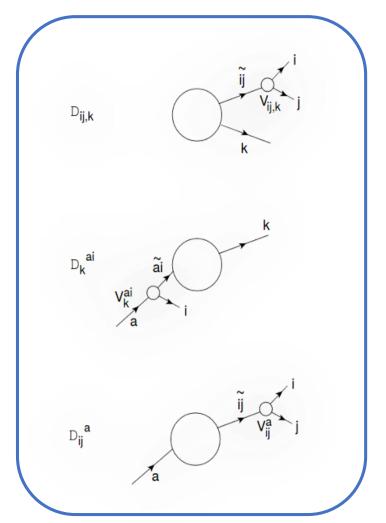
Photon - Borsa, de Florian, IP ('20) NC & CC - Borsa, de Florian, IP ('23) Status on polarized inclusive DIS:

Structure function coefficients available at

- NNLO (photon g1)
 - van Neerven, Zijlstra ('94)
- NNLO (NC & CC g1, g4, g5) Borsa, de Florian, IP ('22)
- N3LO (photon g1)*
- Blumlein, Marquard, Schneider, Schönwald ('22)

Dipole subtraction (NLO)

As in any subtraction method, we build a counterterm **A** that


- Matches the IR behavior of real emission
- Is easily integrated to cancel IR divergences of virtual piece

$$\sigma^{NLO} = \int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right] + \int_m \left[d\sigma^V + \int_1 d\sigma^A \right]_{\epsilon=0}$$

They are **process independent**, and they are based on the factorization formula:

$$d\sigma^A = \sum_{\text{dipoles}} d\sigma^B \otimes dV_{\text{dipole}}$$

Catani, Seymour ('96)

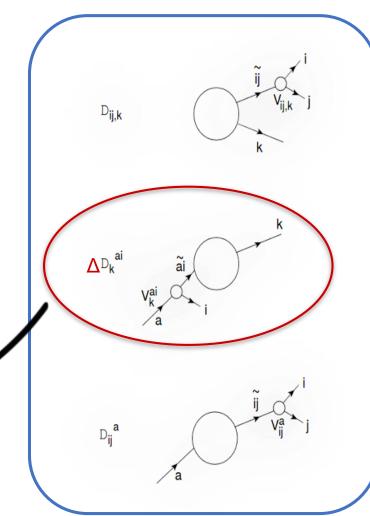
Polarized dipole subtraction (NLO)

$$d\Delta\sigma \equiv \frac{1}{4} \left(d\sigma^{++} - d\sigma^{+-} - d\sigma^{-+} + d\sigma^{--} \right)$$

As in any subtraction method, we build a countenerm A that

- Matches the IR behavior of real emission
- Is easily integrated to cancel IR divergences of virtual piece

$$\sigma^{NLO} = \int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right] + \int_m \left[d\sigma^V + \int_{-d\sigma^A} \right]$$
 Differences only in


They are **process independent**, and they are ba factorization formula:

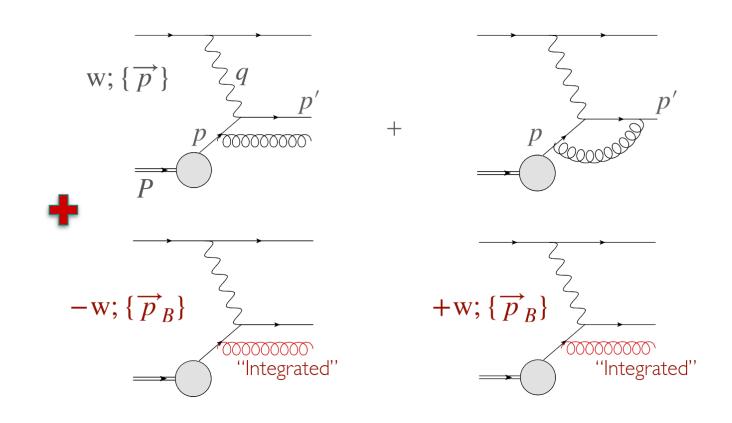
$$d\sigma^A = \sum_{\text{dipoles}} d\sigma^B \otimes dV_{\text{dipole}}$$

Catani, Seymour ('96) - Borsa, de Florian, IP ('20)

initial state

dipoles!!

NNLO – Projection-to-Born method (P2B)


Obtain the fully differential cross section from

- The **inclusive** cross section at the desired order
- The exclusive cross section of the observable + 1 jet at one lower order

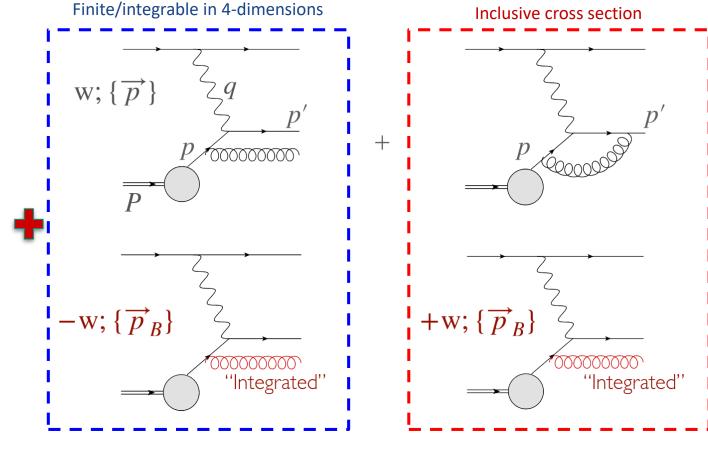
Born kinematics mapping:

$$p_B = xP$$
$$p'_B = p_B + q$$

Not possible in the Breit-frame!!

$$d\sigma_{\mathcal{O}}^{\text{NLO}} = d\sigma_{\mathcal{O}+jet}^{\text{LO}} - d\sigma_{\mathcal{O}+jet,\text{P2B}}^{\text{LO}} + d\sigma_{\mathcal{O}}^{\text{NLO, incl}}$$

NNLO – Projection-to-Born method (P2B)


Obtain the **fully differential** cross section from

- The inclusive cross section at the desired order
- The exclusive cross section of the observable + 1 jet at one lower order

Born kinematics mapping:

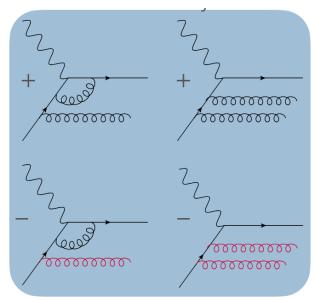
$$p_B = xP$$
$$p'_B = p_B + q$$

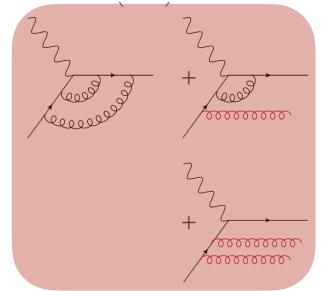
Not possible in the Breit-frame!!

$$d\sigma_{\mathcal{O}}^{\text{NLO}} = d\sigma_{\mathcal{O}+jet}^{\text{LO}} - d\sigma_{\mathcal{O}+jet,\text{P2B}}^{\text{LO}} + d\sigma_{\mathcal{O}}^{\text{NLO, incl}}$$

NNLO – Projection-to-Born method (P2B)

Obtain the **fully differential** cross section from


- The inclusive cross section at the desired order
- The exclusive cross section of the observable + 1 jet at one lower order


In our case...

Born kinematics mapping:

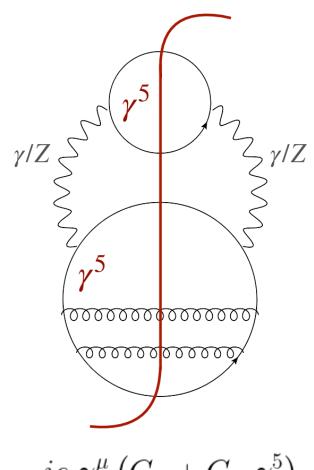
$$p_B = xP$$
$$p'_B = p_B + q$$

Not possible in the Breit-frame!!

$$d\sigma_{1jet}^{\rm NNLO} = d\sigma_{2jet}^{\rm NLO} - d\sigma_{2jet,\rm P2B}^{\rm NLO} + d\sigma_{1jet}^{\rm NNLO,\ incl}$$
 Dipoles Structure Functions

Parity violating (PV) contributions to DIS

Links between polarized and parity violating


processes

$$\sigma^{\text{PV}} \longleftrightarrow \Delta \sigma^{\text{NPV}}$$
$$\Delta \sigma^{\text{PV}} \longleftrightarrow \sigma^{\text{NPV}}$$

- Trivial in **real contributions** (4-dimensional)
- Only valid in virtual ones after vertex simmetrization and finite renormalization (d-dimensional)

$$-ie\left(C_V + C_A \gamma^5\right) \to -ie\left(C_V \gamma^{\mu} + C_A \tilde{\gamma}^{\mu} \gamma^5\right)$$
$$(\Delta)C_T = \alpha_s \ 4C_F \ d(\Delta)\hat{\sigma}_{\text{axial}}^{\text{LO}}$$

(restauration of axial Ward identity)

$$-ie \gamma^{\mu} \left(C_V + C_A \gamma^5 \right)$$

Parity violating (PV) contributions to DIS

Quark channel

γ^5 EVEN

- **Unpolarized NPV**
- Polarized PV

$${''}\Delta \hat{\sigma}_q^{PV} = \hat{\sigma}_q^{NPV} \, {''}$$

- **Unpolarized PV**
- Polarized NPV

"
$$\hat{\sigma}_q^{PV} = \Delta \hat{\sigma}_q^{NPV}$$
"

$$\hat{\sigma}_q = \hat{\sigma}_q^{PV} + \hat{\sigma}_q^{NPV}$$

VALID FOR

13

$$q+W/Z \rightarrow q, \ q+W/Z \rightarrow q+g \text{ and } q+W/Z \rightarrow q+g+g$$

Gluon channel

$$\gamma^5$$
 odd

- **Unpolarized PV**
- Polarized NPV

$$\hat{\sigma}_g^{PV} = -\Delta \hat{\sigma}_q^{NPV}$$

However, PV contributions with initial gluons cancel due to charge conjugation arguments!

Parity violating (PV) Structure Functions

The unpolarized F₃ was known at NNLO (van Neerven, Zijlstra ('92)), but it's polarized equivalents g₄ y g₅ not

We get g₄ & g₅ at NNLO out of F₂ y F₁ by the axial Ward identities since

- Initial gluon contributions vanish
- Ignore triangle terms in NC

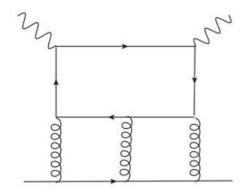
$$\begin{split} W^i_{\mu\nu} &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) \left[F^i_1(x,Q^2) - \frac{h}{2} \ g^i_5(x,Q^2) \right] \\ &+ \frac{\left(p_{\mu} - \frac{p \cdot q}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{p \cdot q}{q^2} q_{\nu} \right)}{p \cdot q} \left[F^i_2(x,Q^2) - \frac{h}{2} \ g^i_4(x,Q^2) \right] \\ &- i \epsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha}p^{\beta}}{2p \cdot q} \left[F^i_3(x,Q^2) + h \ g^i_1(x,Q^2) \right], \end{split}$$

$$\begin{split} L_{\gamma}^{\mu\nu} &= 2 \left(-k \cdot k' g^{\mu\nu} + k^{\mu} k'^{\nu} + k'^{\mu} k^{\nu} - i \lambda \epsilon^{\mu\nu\alpha\beta} k_{\alpha} k'_{\beta} \right), \\ L_{z}^{\mu\nu} &= \left(g_{V}^{e} + e \lambda g_{A}^{e} \right)^{2} L_{\gamma}^{\mu\nu}, \\ L_{\gamma/z}^{\mu\nu} &= \left(g_{V}^{e} + e \lambda g_{A}^{e} \right) L_{\gamma}^{\mu\nu}, \\ L_{W}^{\mu\nu} &= \left(1 + e \lambda \right)^{2} L_{\gamma}^{\mu\nu}, \end{split}$$

Borsa, de Florian, IP ('22)

Parity violating (PV) Structure Functions

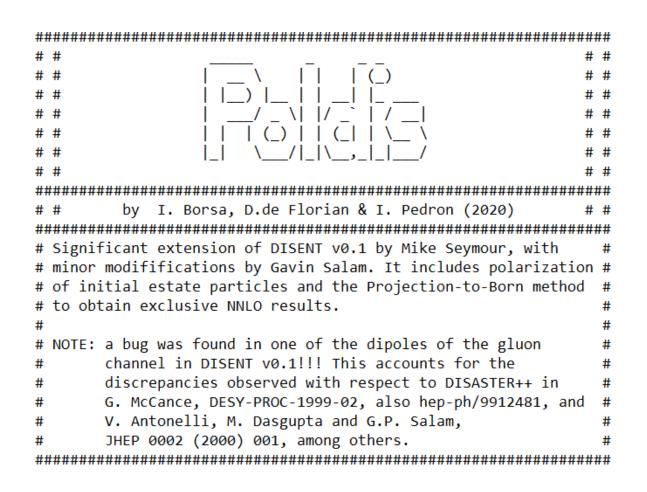
The unpolarized F₃ was known at NNLO (van Neerven, Zijlstra ('92)), but it's polarized equivalents g₄ y g₅ not



We get g₄ & g₅ at NNLO out of F₂ y F₁ by the axial Ward identities since

- Initial gluon contributions vanish
- Ignore triangle terms in NC

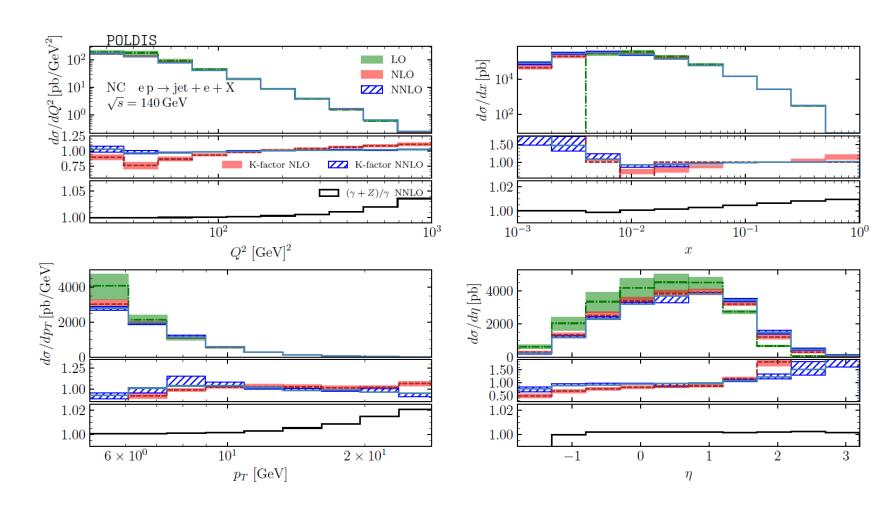
$$\begin{split} \Delta C_4^{j,g,(2)} &= \Delta C_L^{j,g,(2)} = 0, \\ \Delta C_4^{j,\mathrm{NS},(2)} &= \Delta C_4^{j,\mathrm{S},(2)} = C_2^{j,\mathrm{NS},(2)}, \\ \Delta C_L^{j,\mathrm{NS},(2)} &= \Delta C_L^{j,\mathrm{S},(2)} = C_L^{j,\mathrm{NS},(2)}. \end{split}$$


(Pure-singlet PV cancels at NNLO)

No longer valid at N3LO!

POLDIS

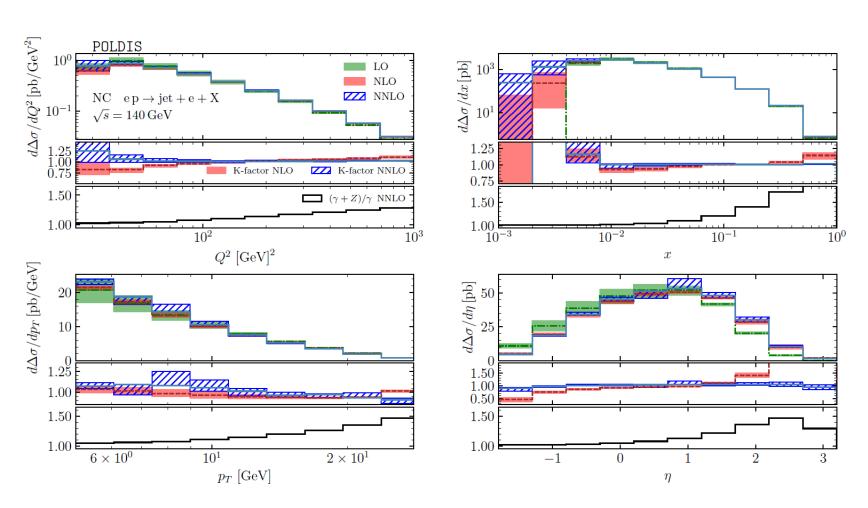
Calculation implemented in our Monte Carlo code POLDIS


- (un)polarized NNLO singlejet in lab frame, for NC and CC
- (un)polarized dijets at NLO in lab frame or Breit frame, for NC and CC

UNPOLARIZED NEUTRAL CURRENTS

- Small Z contribution (photon interference mostly)
- Good perturbative convergence

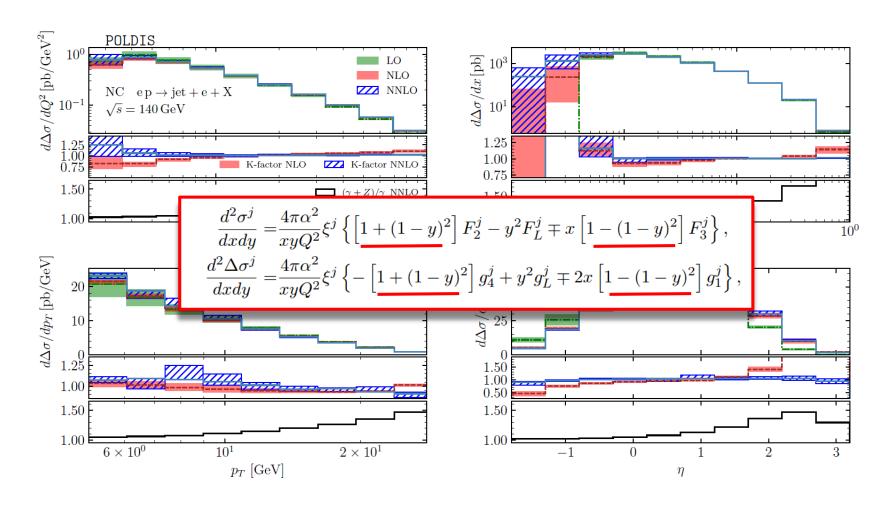
Borsa, de Florian, IP ('23)



POLARIZED NEUTRAL CURRENTS

- **Enhanced contribution** at high Q2, x and pt (PV terms and cancelations)
- Sizable effect on spin asymmetries!

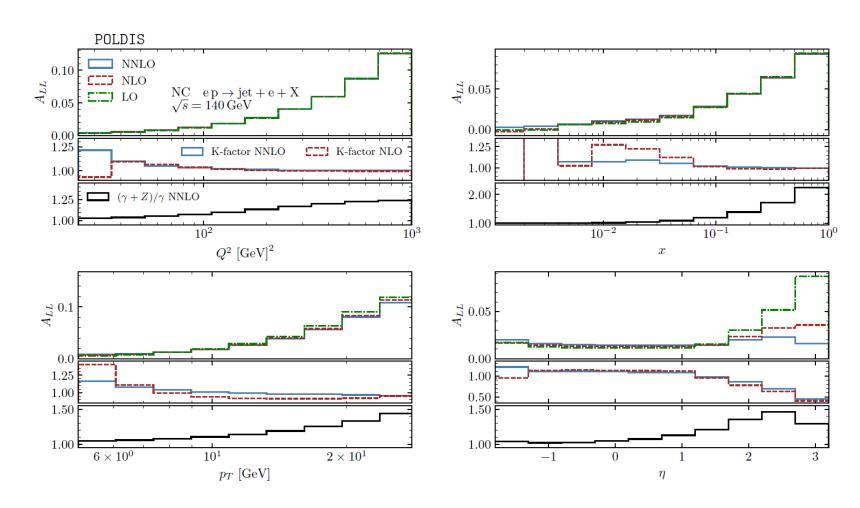
Borsa, de Florian, IP ('23)

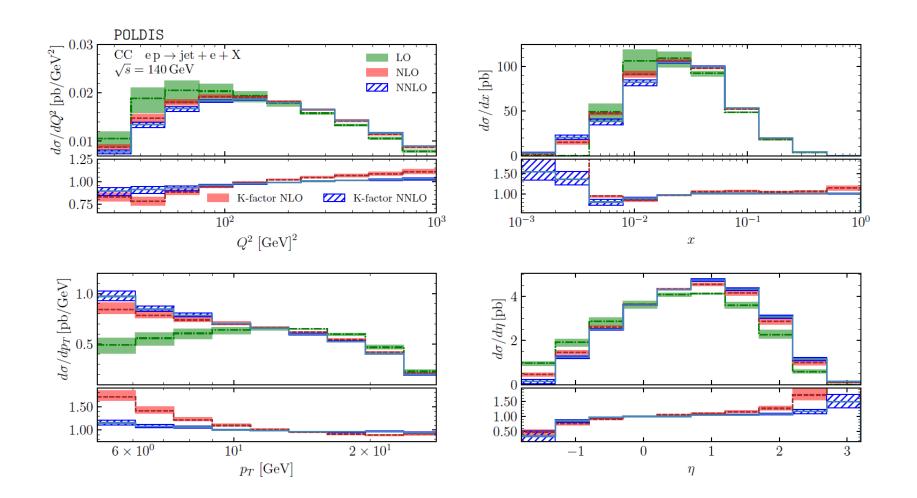


POLARIZED NEUTRAL CURRENTS

- Enhanced contribution at high Q2, x and pt (PV terms and cancelations)
- Sizable effect on spin asymmetries!

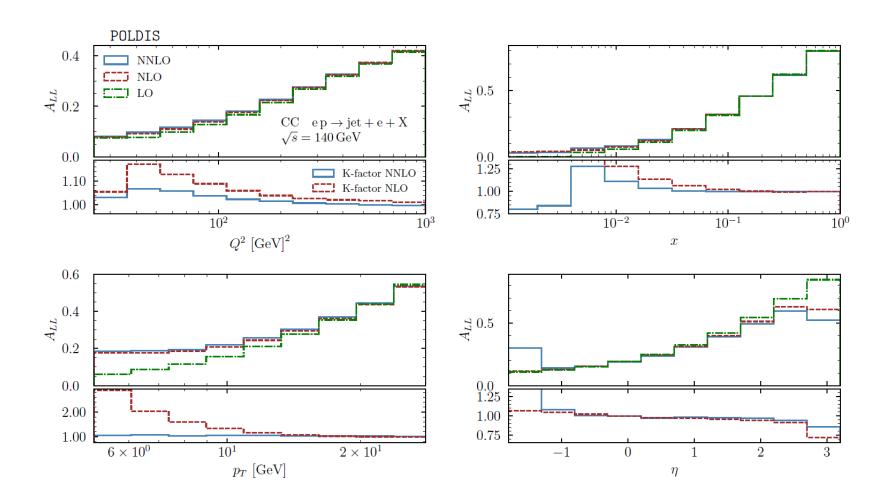
Borsa, de Florian, IP ('23)




SPIN ASYMMETRIES NEUTRAL CURRENTS

- Enhanced contribution at high Q2, x and pt (PV terms and cancelations)
- Sizable effect on spin asymmetries!

Borsa, de Florian, IP ('23)



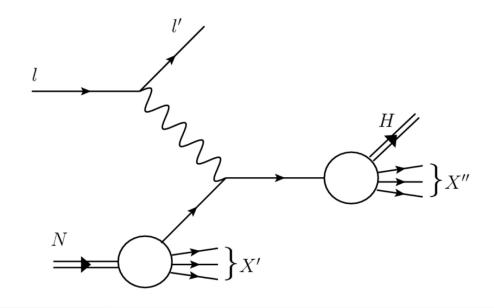
UNPOLARIZED **CHARGED CURRENTS**

- Greatly suppressed by W mass
- At LO pt and Q2 are related, leading to large corrections

Borsa, de Florian, IP ('23)

ASYMMETRIES CHARGED CURRENTS

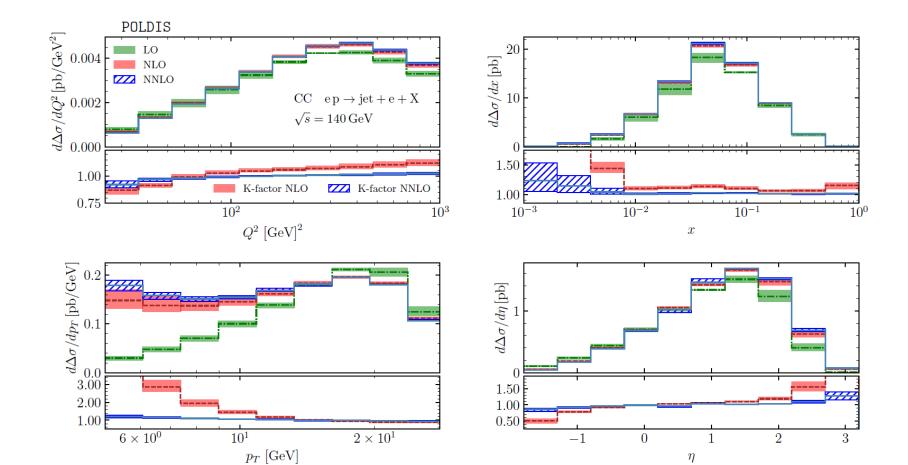
- Higher than NCs
- At LO pt and Q2 are related, leading to large corrections


Borsa, de Florian, IP ('23)

What's next?

Possibilities:

- **Extend code to calculate SIDIS**
- Add quark mass effects


In conclusion...

- Higher order QCD corrections are fundamental for the precise description of observables, and they will be instrumental in the description of the proton's spin (EIC underway!)
- We presented Polarized NNLO 1-jet production for neutral & charged current DIS
- Better perturbative convergence, but still with sizable corrections
- Significant corrections to double spin asymmetries

POLARIZED CHARGED CURRENTS

- Greatly suppressed by W mass
- At LO pt and Q2 are related, leading to large corrections

Borsa, de Florian, IP ('23)