QCD phase diagram from lattice simulations

A. Yu. Kotov

 $T \sim \sqrt[3]{n} \sim \Lambda$

 $T \sim \sqrt[3]{n} \sim \Lambda$ $T \sim 10^{12-13} \text{ K} \sim 10^{2-3} \text{ MeV}$

 $T \sim \sqrt[3]{n} \sim \Lambda$ $T \sim 10^{12-13} \text{ K} \sim 10^{2-3} \text{ MeV}$ $n \sim n_0 \approx 0.15 \text{ fm}^{-3} \sim 10^6 \text{ MeV}^3$

Quarks & Gluons

Color superconductor ?

Quarks & Gluons

Color superconductor ?

SKETCH!

Precise data: (mainly) lattice QCD in the blue region

Quarks & Gluons

Color superconductor ?

SKETCH!

Precise data: (mainly) lattice QCD in the blue region

What is covered in this talk?

uarks & Gluons

Overview of the <u>lattice QCD</u> results on:

Color superconductor ?

 μ_B

SKETCH!

Precise data: (mainly) lattice QCD in the blue region

What is covered in this talk?

Overview of the lattice QCD results on:

- Phase diagram of QCD in (T, μ) plane
- Equation of State (EoS) and conserved charge fluctuations

Color superconductor ?

 μ_B

Thermodynamics and lattice QCD **Grand-canonical partition function**

All field configurations

 $Z = \operatorname{tr} e^{-(H_{\text{QCD}} - \mu_B B - \mu_Q Q - \mu_S S)/T} \to \int DA_{\mu} D\bar{\psi} D\psi e^{-S_{\text{QCD}}} \to \operatorname{Computer}$

Thermodynamics and lattice QCD Grand-canonical partition function

$$Z = \operatorname{tr} e^{-(H_{\rm QCD} - \mu_B B - \mu_Q Q - \mu_S S)/T}$$

All field configurations

 $T \neq 0$: Compact time $A_{\mu}(t + L_4, x, y, z) = A_{\mu}(t, x, y, z), \quad L_4 = 1/T$

 $\rightarrow \int DA_{\mu}D\bar{\psi}D\psi e^{-S_{\rm QCD}} \rightarrow \text{Computer}$

Thermodynamics and lattice QCD **Grand-canonical partition function**

$$Z = \operatorname{tr} e^{-(H_{\rm QCD} - \mu_B B - \mu_Q Q - \mu_S S)/T}$$

All field configurations

 $T \neq 0: \text{ Compact time } A_{\mu}(t + L_4, x, y, z) = A_{\mu}(t, x, y, z), \quad L_4 = 1/T$ $\mu \neq 0: S_f = \bar{\psi} \left(\gamma_{\mu} \partial_{\mu} - ig\gamma_{\mu} A_{\mu} + m_f + \mu \gamma_0 \right) \psi$

 $\rightarrow \int DA_{\mu}D\bar{\psi}D\psi e^{-S_{\rm QCD}} \rightarrow \text{Computer}$

Advantages:

Advantages:

• First-principle method

Advantages:

- First-principle method
- Perfect for study of the phase diagram

Advantages:

- First-principle method
- Perfect for study of the phase diagram
- $N_f = 2 + 1 + 1$ quarks (u,d,s,c), physical parameters!

Advantages:

- First-principle method
- Perfect for study of the phase diagram
- $N_f = 2 + 1 + 1$ quarks (u,d,s,c), physical parameters!

Advantages:

- First-principle method
- Perfect for study of the phase diagram
- $N_f = 2 + 1 + 1$ quarks (u,d,s,c), physical parameters!

- Powerful supercomputers (typical cost: <u>100 years</u> on your gaming computer)
 - Infinite volume $V \to \infty$, continuum limit $a \to 0$

Advantages:

- First-principle method
- Perfect for study of the phase diagram
- $N_f = 2 + 1 + 1$ quarks (u,d,s,c), physical parameters!

- Powerful supercomputers (typical cost: <u>100 years</u> on your gaming computer)
 - Infinite volume $V \to \infty$, continuum limit $a \to 0$
- $\mu \neq 0$: sign problem: $e^{-S_{\text{QCD}}} \in \mathbb{C}$

Advantages:

- First-principle method
- Perfect for study of the phase diagram
- $N_f = 2 + 1 + 1$ quarks (u,d,s,c), physical parameters!

- Powerful supercomputers (typical cost: <u>100 years</u> on your gaming computer)
 - Infinite volume $V \to \infty$, continuum limit $a \to 0$
- $\mu \neq 0$: sign problem: $e^{-S_{\text{QCD}}} \in \mathbb{C}$
 - Solutions used in real simulations:
 - Taylor expansion in μ_R
 - Analytic continuation: $\mu_B \rightarrow i \mu_B$

Advantages:

- First-principle method
- Perfect for study of the phase diagram
- $N_f = 2 + 1 + 1$ quarks (u,d,s,c), physical parameters!

Disadvantages:

- Powerful supercomputers (typical cost: <u>100 years</u> on your gaming computer)
 - Infinite volume $V \to \infty$, continuum limit $a \to 0$
- $\mu \neq 0$: sign problem: $e^{-S_{\text{QCD}}} \in \mathbb{C}$
 - Solutions used in real simulations:
 - Taylor expansion in μ_{R} \bullet
 - Analytic continuation: $\mu_B \rightarrow i \mu_B$

Only work for small $\mu_B/T \lesssim 2.5 - 3$

Zero μ , nonzero T

Zero μ , **nonzero** TNature of the chiral phase transition and (pseudo)-critical temperature T_c

Zero μ , nonzero T

[TWEXT, 2021]

<u>New Chiral-Spin</u> $SU(2)_{CS}$ <u>symmetry</u>: $T_{\rm ch} \lesssim T \lesssim 3T_{\rm ch}$

[Rohrhofer et al., 2020]

- IR phase: $T \leq 250$ MeV [A.Alexandru and I. Horvath, 2019]

• Monopole condensation: $T \leq 275$ MeV [M.Cardinali, M.D'Elia, A. Pasqui, 2021]

11

Zero μ , nonzero T

Possible transitions or thresholds: $T \sim 2 - 3 T_c$ No consensus or full understanding of the physics

• Several (lattice) indications that regions $T \gtrsim T_c$ and $T \gg T_c$ are different

Small μ , **nonzero** TTaylor expansion

$$T_{c}(\mu_{B}) = T_{0} \left(1 - \kappa_{2} \left(\frac{\mu_{B}}{T_{0}} \right)^{2} - \kappa_{4} \left(\frac{\mu_{B}}{T_{0}} \right)^{4} \right), \quad T_{0} \equiv T_{c}(\mu_{B} = 0)$$

Heavy Ion Collisions:

 $S = 0, \quad Q \approx 0.4B \longrightarrow \mu_{Q,S} \equiv \mu_{Q,S}(\mu_B)$

Small μ , nonzero T**Taylor expansion**

$$T_{c}(\mu_{B}) = T_{0} \left(1 - \kappa_{2} \left(\frac{\mu_{B}}{T_{0}} \right)^{2} - \kappa_{4} \left(\frac{\mu_{B}}{T_{0}} \right)^{4} \right), \quad T_{0} \equiv T_{c}(\mu_{B} = 0)$$

[WB, 2020]

Small μ , nonzero TEquation of State

• Pressure $p(T, \mu_B)$:

• Baryon density $n_B = \frac{\partial p}{\partial \mu_B}$ • Entropy density $s = \frac{\partial p}{\partial T}$

• Energy density: $\epsilon = Ts - p + \mu_B B$

Small μ , **nonzero** TEquation of State

- Pressure $p(T, \mu_B)$:
 - Baryon density $n_B = \frac{\partial p}{\partial \mu_B}$

• Entropy density
$$s = \frac{\partial p}{\partial T}$$

• Energy density:
$$\epsilon = Ts - p + \mu_B B$$

EoS @ $\mu = 0$: [WB, 2014] [HotQCD, 2014]

Small μ , nonzero TEquation of State

4.5

3.5

1.5

0.5

120

(E) 2.5 t/d 2

- Pressure $p(T, \mu_B)$:
 - Baryon density $n_B = \frac{\partial p}{\partial \mu_B}$

• Entropy density
$$s = \frac{\partial p}{\partial T}$$

• Energy density: $\epsilon = Ts - p + \mu_B B$

EoS @ $\mu = 0$: [WB, 2014] [HotQCD, 2014]

Equation of State: • $\mu_B/T \lesssim 2.5$ for $T \lesssim 200$ MeV • $\mu_B/T \lesssim 3$ for $T \gtrsim 200$ MeV

Small $\mu \rightarrow 0$, nonzero T

• Taylor expansion: convergence radius in μ_B

$$\chi_2^B(T,\mu_B) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^B(\mu_B/T)^{2n} \qquad r_{2n}^{\chi} = \left| \frac{2n(2n-1)\chi_{2n}^B}{\chi_{2n+2}^B} \right|^{\frac{1}{2n}}$$

19

$$\chi_{2}^{B}(T,\mu_{B}) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^{B} (\mu_{B}/T)^{2n} \qquad r_{2n}^{\chi} = \left| \frac{2n(2n-1)\chi_{2n}^{B}}{\chi_{2n+2}^{B}} \right|^{1/2}$$

20

• Taylor expansion: convergence radius in μ_B

- Taylor expansion: convergence radius in μ_B
- Lee-Yang zeros

- Taylor expansion: convergence radius in μ_R
- Lee-Yang zeros

- Taylor expansion: convergence radius in μ_R
- Lee-Yang zeros
- Transition width from $\mu_R^2 < 0$ to $\mu_R^2 > 0$

Lar CEP

• Taylc

• Lee-

• Trans

[WB, 2020]

- Taylor expansion: convergence radius in μ_R
- Lee-Yang zeros
- Transition width from $\mu_R^2 < 0$ to $\mu_R^2 > 0$

- Lee-Yang zeros

• Understanding properties (phases, thresholds) in QCD at finite T

- Understanding properties (phases, thresholds) in QCD at finite T
- Higher order fluctuations $\chi^n_{B,Q,S}$

- Understanding properties (phases, thresholds) in QCD at finite T
- Higher order fluctuations $\chi^n_{B,Q,S}$
- Improving CEP estimations

- Understanding properties (phases, thresholds) in QCD at finite T
- Higher order fluctuations $\chi^n_{B,Q,S}$
- Improving CEP estimations
- Approach to solve or overcome the sign problem

- Understanding properties (phases, thresholds) in QCD at finite T•
- Higher order fluctuations $\chi_{B,O,S}^n$
- Improving CEP estimations
- Approach to solve or overcome the sign problem
 - Reweighting technique [WB, 2020]
 - Complex Langevin
 - Lefschetz thimbles
 - Density of states lacksquare
 - Machine Learning

- [M. Cristoforetti et al., 2012]
- [K. Langfeld et al., 2012]

[S. Lawrence, Y. Yamauchi et al., 2012]

Conclusions **QCD** phase diagram on the lattice

- Precise data on the crossover at zero and small μ_R
- Non-trivial properties (phases) of finite-T QCD

• EoS of QCD at $\mu_R/T \lesssim (2.5 - 3)$, conserved charge fluctuations at $\mu_R = 0$

BACKUP

<u>Spectrum of the Dirac operator:</u>

$$D | \lambda \rangle = \lambda | \lambda \rangle$$

Density $\rho(\lambda)$ contains a lot of information about the system and its symmetries

Banks-Casher relation:

$$\frac{1}{V} \langle \bar{\psi} \psi \rangle \to \int_0^\infty \rho(\lambda) \frac{m}{\lambda^2 + m^2} \to \pi \rho(0)$$

-15

$$\frac{n \rho n \alpha \sigma \sigma}{\rho(\lambda) \sim \lambda^{-1+\delta}}$$

IR phase

Can be described by topological fluctuations ()

Complex Langevin method and Lefschetz thimbles

- Complexify: $x \to z \in \mathbb{C}$
- Complex Langevin: $\dot{z} = -\partial_{z}S(z) + \eta$
- lacksquarecontour to get milder sign problem (Machine Learning)

$$Z = \int dx e^{-S(x)} dx e^{-S(x)}$$

Lefschetz thimbles: instead of integral along real axis $z = x \in \mathbb{R}$, deform a

33

Chiral-spin symmetry

•
$$\psi \to \exp\left(i\frac{\epsilon^n \Sigma^n}{2}\right)\psi$$
 $\Sigma_n = \{\gamma_k, -i\gamma_5\gamma_k, \gamma_5\}$

• Symmetry of the chromo-electric color charge

$$Q^a = \int d^3x q^{\dagger}(x)$$

Larger symmetry then in the free theory(!)

 $T^a q(x)$

$$(0,0) \qquad \overline{\Psi} \begin{pmatrix} f_{1}(0,1^{++}) \\ \mathbb{I}_{F} \otimes \gamma^{5} \gamma^{i} \end{pmatrix} \Psi \qquad \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{I}_{F} \otimes \gamma^{i} \end{pmatrix} \Psi$$

$$(1/2,1/2)_{a} \qquad \qquad \overline{\Psi} \begin{pmatrix} f_{1}(1,1^{+-}) \\ \mathbb{V}(1)_{A} \end{pmatrix} \stackrel{b_{1}(1,1^{+-}) \\ \mathbb{V}(\tau^{a} \otimes \gamma^{5} \gamma^{4} \gamma^{i}) \Psi & \longrightarrow \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{I}_{F} \otimes \gamma^{4} \gamma^{i} \end{pmatrix} \Psi \qquad \qquad \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V}(1_{F} \otimes \gamma^{5} \gamma^{4} \gamma^{i}) \Psi \\ \mathbb{V}(1)_{A} \end{pmatrix} \stackrel{c}{\Psi} \begin{pmatrix} \rho(1,1^{--}) \\ \mathbb{V}(\tau^{a} \otimes \gamma^{i}) \Psi & \longrightarrow \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V}(\tau^{a} \otimes \gamma^{5} \gamma^{i}) \Psi \\ \mathbb{V}(1_{F} \otimes \gamma^{5} \gamma^{i}) \Psi \end{pmatrix} \qquad \qquad U(1)$$

$$(1/2,1/2)_{b} \qquad \qquad \overline{\Psi} \begin{pmatrix} f_{1}(0,1^{++}) \\ \mathbb{V}(\tau^{a} \otimes \gamma^{5} \gamma^{i}) \Psi \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} f_{1}(0,1^{++}) \\ \mathbb{V}(\tau^{a} \otimes \gamma^{5} \gamma^{i}) \Psi \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} f_{1}(0,1^{++}) \\ \mathbb{V}(\tau^{a} \otimes \gamma^{5} \gamma^{i}) \Psi \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} f_{1}(1,1^{+-}) \\ \mathbb{V}(\tau^{a} \otimes \gamma^{5} \gamma^{i} \gamma^{i}) \Psi \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} f_{1}(1,1^{+-}) \\ \mathbb{V}(\tau^{a} \otimes \gamma^{4} \gamma^{i}) \Psi \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \begin{pmatrix} 0,1^{--} \\ \mathbb{V} \begin{pmatrix} 0,0 \end{pmatrix} & \overline{\Psi} \end{pmatrix} \end{pmatrix}$$

[L. Glozman, 2022]

Lee-Yang zeros

- $Z \equiv Z(V, T, \mu_R)$ is real for $\mu_R \in \mathbb{R}$
- $Z \equiv Z(V, T, \mu_R)$ can have complex μ_R^i roots
- Lee-Yang theorem: phase transition when $\mu_B^i \to \mu_B^c \in \mathbb{R}$ [Lee, Yang, 1952]
- Lattice data: $B(\mu_B) \sim \frac{\partial \log Z}{\partial \mu_B}$ at $-i\mu_B^0 \in \mathbb{R}$ or χ_n^B at $\mu_B = 0$
- Reconstruct Pade approximation of $B(\mu_B)$ for all μ_B
- Study its zeros and when they approach real axis

[Bielefeld-Parma, 2023]

Reweighting for the sign problem

•
$$p \sim e^{-S_G} \det D = e^{-S_G} |\det D| e^{i\theta}$$

• $p \sim e^{-S_G} \operatorname{Re} \det D = e^{-S_G} |\operatorname{Re} \det D| \operatorname{sign}(\operatorname{Re} \det D)$

Weight

•
$$\int dUp[U]O[U] \to \int dUp_w[U]p_O[U]$$

Issues with staggered fermions

Observable

[U]O[U]

[WB, 2021]

