Intrinsic Charm in the proton

Giacomo Magni, on behalf of NNDPF

EINN2023, Paphos Cyprus, 1st November 2023

NTK-UG

1

E-mail: gmagni@nikhef.nl

Heavy quark in PDF fits.

The NNPDF4.0 Intrinsic Charm

A possible IC charm asymmetry

Heavy quark in PDF fits.

► A possible IC charm asymmetry.

The NNPDF4.0 Intrinsic Charm.

Factorisation and PDFs

 $\sigma(x,Q^2) = \sum_{i}^{n_f} f_i(z,Q^2) \otimes \hat{\sigma}_i(\frac{x}{z},Q^2) + \mathcal{O}(\frac{\Lambda^2}{O^2})$

- **Factorsation theorem** allows us to separate the **Perturbative** component $\hat{\sigma}_i$ (ME), from the Non Perturbative f_i (PDF).
- Partonic ME coefficient can be computed using pQCD.
- **PDFs** are universal and can be extracted from data.
- PDFs are not directly observables but are functional probability distribution and depend on the momentum fraction x and on an energy scale Q^2 .

A DIS process: $e \ p \rightarrow e + X$

The role of Heavy Quarks PDFs

To account for heavy quark mass effect, a QCD Variable Flavour scheme (VFNS) is needed.

Partonic ME can be computed in a massless scheme assuming that $Q^2 \gg m_h^2$

 $Q^2 \gg m_h^2$

- All the collinear $log(\frac{Q^2}{m_t^2})$ are reabsorbed inside the PDFs and resummed using DGLAP equations.
- **Heavy quark PDFs** can be treated as light flavour, and are **coupled** to other patrons (light quarks and gluons).

 $Q^2 < m_h^2$

- Mass effects are retained inside the partonic ME. A smooth transition in the region $Q^2 \approx m_h^2$ is ensured with various prescriptions.
- Heavy quark PDFs are now decoupled from the others and become **scale independent**: $f_{h}^{(n_{l}+1)}(x,Q) \rightarrow f_{h}^{(n_{l})}(x).$
- Only light flavors are active in the DGLAP equations.

The role of Heavy Quarks PDFs

To account for heavy quark mass effect, a QCD Variable Flavour scheme (VFNS) is needed.

Partonic ME can be computed in a **massless** scheme assuming that $Q^2 \gg m_h^2$

 $Q^2 \gg m_h^2$

- All the collinear $log(\frac{Q^2}{m_t^2})$ are reabsorbed inside the PDFs and resummed using DGLAP equations.
- Heavy quark PDFs can be treated as light flavour, and are **coupled** to other patrons (light quarks and gluons).

 $Q^2 < m_h^2$

- Mass effects are retained inside the partonic ME. A smooth transition in the region $Q^2 \approx m_h^2$ is ensured with various prescriptions.
- Heavy quark PDFs are now decoupled from the others and become **scale independent**: $f_{h}^{(n_{l}+1)}(x,Q) \rightarrow f_{h}^{(n_{l})}(x).$
- Only light flavors are active in the DGLAP equations.

Are the heavy quark PDFs vanishing for scales $Q^2 < m_h^2$?

The Intrinsic Charm hypothesis

- The **charm** quark is the natural candidate to address this question as: $m_p = 0.938 \ GeV \approx m_c = 1.51 \ GeV.$
- The original idea of a non perturbative charm component of the proton trace back to 1980. Brodsky, Hoyer, Peterson, Sakai [Phys.Lett.B23451-455].
- We define the charm content of the proton for $Q < m_c$ in the $n_f = 3$ flavour scheme as Intrinsic Charm (IC).
- To determine IC we will need to **separate the perturbative component** of the charm PDF. Results are based on:

Evidence for intrinsic charm quarks in the proton

Nature 608 (2022) 7923, 483-487 [arxiv:2208.08372] R. D. Ball, A. Candido, J.C. Martinez, S. Forte, T.Giani, F. Hekhorn, K. Kudashkin, GM and J.Rojo.

The Intrinsic Charm hypothesis

In a **purely perturbative** scenario the charm PDF is determined as:

$$f_c^{(3)} = 0 \rightarrow f_c^{(4)}(x, m_c^2) =$$

 $f_c^{(4)}(x,Q)$ functional form is fully determined by the DGLAP evolution and the initial boundary conditions.

Allowing for Intrinsic Charm means:

$$f_c^{(3)}(x) \neq 0 \rightarrow f_c^{(4)}(x, m_c^2) = A_{cc} \otimes$$

 $f_c^{(4)}(x, Q)$ has to treated as the other light flavour and fitted to the data.

Heavy quark in PDF fits.

► The NNPDF4.0 Intrinsic Charm.

A possible IC charm asymmetry.

The NNPDF4.0 methodology

1. PDFs are parametrised in $n_f = 4$, $\boxtimes t \boxtimes_0 = 1.65 \ GeV$ using a **neural net**:

2. Convolution with partonic MEs.

3. Run the **minimisation** to compare with data and find the best fitting PDFs.

The NNPDF4.0 methodology

More than 4000 datapoints, collected at various different experiments.

Many (new) LHC process are included:
 DY, W, t, tt, jets.

NNPDF4.0 Charm PDF

In NNPDF 4.0 [arxiv:2109.02653]:

- $\bar{c} = c$, so we consider only the **total** c^+ combination.
- c⁺ at the fitting scale exhibits a non
 vanishing peak in the high-x region
 and vanishes at low-x.
- Constrain are coming mainly from collider data.
- The charm PDF is consistent with EMC data.

Probing Intrinsic Charm

- Starting from the fitting scale we **evolve** the NNPDF4.0 baseline **to** $Q^2 = m_c^2$.
- When passing the heavy quark threshold we need to invert the matching conditions A_{ii} .
- The **remaining part** of the charm PDF **is the intrinsic component**, which is scale independent for $Q^2 < m_c^2$.

Probing Intrinsic Charm

- Starting from the fitting scale we **evolve** the NNPDF4.0 baseline **to** $Q^2 = m_c^2$.
- When passing the heavy quark threshold we need to invert the matching conditions A_{ii} .
- The **remaining part** of the charm PDF **is the intrinsic component**, which is scale independent for $Q^2 < m_c^2$.

The resulting **IC** in the $n_f = 3$ scheme:

- Still contains *valence-like* peak. \checkmark
- \checkmark For $x \leq 0.2$ the perturbative uncertainties are quite large.
- \checkmark The carried **momentum fraction** is within 1%.

Intrinsic Charm stability

- ► The determined IC is **stable** upon **mass variations**.
- The determined IC is stable upon datasets variations.
- EMC DIS data (not included in the default) can constrain further the charm PDF, but don't shift the central value.

Impact of IC at LHC

The evidence of **total** c^+ **IC** is validated comparing to Z + cproduction at LHCb [arxiv:2109.08084]:

- Data vs theory comparison at NLO+PS [arxiv: 1009.5594]
- Better agreement is found once IC is allowed, especially in the forward region.
- High correlation with the charm PDF and LHCb observable:

Heavy quark in PDF fits.

► A possible IC charm asymmetry.

The NNPDF4.0 intrinsic charm.

Models for Intrinsic Charm

Brodsky, Hoyer, Peterson, Sakai • **BHPS** model: [Phys.Lett.B23451-455] $p \rightarrow uudc\bar{c}$

$$xc^{+} = \frac{1}{2}Nx^{3}\left[\frac{1}{3}(1-x)(1+10x+x^{2}) + 2x(1+x^{2})\ln(x)\right]$$

Meson Baryon model:

Hobbs, Londergan, Melnitchouk [arxiv:1311.1578]

$$p \to \Lambda_c^+ + \bar{D}_0$$

$$xc^{+} = \frac{N}{B(\alpha + 2, \beta + 1)} x^{(1+\alpha)} (1-x)^{\beta}$$

- Overall PDF normalisation non given by the model.
- BHPS assumes $\bar{c} = c$, not true in M/B models.
- Work in the limit $m_c \gg m_p$.

The charm asymmetry: $c^- \neq 0$?

- The ultimate test to probe a possible IC would be to find a charm asymmetry $c \neq \bar{c}$ also in $n_f = 3$ scheme.
- pQCD can also generate an heavy quark asymmetry, but only through higher order corrections $\mathcal{O}(\alpha_s^2)$.
- Such asymmetry will be small and with a vanishing integral, but can be probed.

Let's repeat our analysis now dropping the assumption $c \neq \bar{c}$.

The intrinsic charm valence in the proton [in preparation]

Ball, Candido , Cruz-Martinez, Forte, Giani , Hekhorn, GM , Nocera, Rojo, Stegeman. 19

The charm asymmetry: $c^- \neq 0$?

- Total charm c^+ is **not changing** drastically once fitted c^- is allowed. Better overall agreement with the experimental data.
 - Stability upon charm mass variation is/verified.
 - tow Q² data play a mild role. Collider data favour a larger charm
 - asymmetry.

The intrinsic charm valence in the proton [in preparation]

Ball, Candido , Cruz-Martinez, Forte, Giani , Hekhorn, GM , Nocera, Rojo, Stegeman. 20

Future experimental tests on IC

- 2. At EIC (Neutral currents DIS):
 - Measuring a charm reduced cross section can constrain the total c^+ **IC**.
 - Flavour/anti-flavour tagging of the final jets can be used to construct an asymmetry.
 - Measuring the parity violating structure function xF_3 can also probe $c^- \neq 0$ **IC**.

- 1. At LHC Run3 and HL-LHC:
 - Measuring $W^{\pm} + b$ and Z + c in the forward region can constrain better the total c^+ IC.
 - Flavour/anti-flavour tagging of the final jet can be used to construct an asymmetry.
 - This can be a sensible probe to a non vanishing $c^- \neq 0$ IC.

Future experimental tests on IC

3. At LHC FASER2 (FPF):

- ▶ Neutrino DIS can be a direct probe of a flavour asymmetry in the target. ($F_{2,charm}^{\nu} F_{2,charm}^{\bar{\nu}} \propto c^{-}$ at LO).
- Neutrino beams coming from LHC *pp* collisions can be sensitive to IC.
- Good kinematic coverage: probing small-x gluon and largex quark PDFs.

First evidence of IC

- Heavy quark PDFs have a non negligible impact in the current global PDF fits.
- The NNPDF releases allow both for perturbative and fitted charm.
- We have found a first evidence of a non zero intrinsic charm c^+ in $n_f = 3$, carrying a momentum fraction total within 1%.
- IC is relevant in the large-x region and display a valence-like structure.
- IC is in agreement with most recent LHCb results and stable upon inputs variations.

Future tests on IC

Ongoing work:

- ► A first attempt to **fit** *c*⁻ indicates that the **IC asymmetry** can be non vanishing. *The intrinsic charm valence in the proton [in preparation]*
- Impact of the N3LO pQCD corrections might be relevant. Need to include properly Theory uncertainties in PDF fits.

Future colliders:

- In the *(near)* future we will be able to test and constrain further both the total charm PDF and its possible asymmetry.
- This will require dedicated experimental analysis and accurate flavour jet tagging.

