LEVERHULME TRUST _____

Recent measurement and experimental prospects of the Muon g-2 experiment at Fermilab

E. Bottalico EINN 2023 31 October 2023

The history of Muon g-2

The history of the Muon g-2 experiments finds its roots in the series of experiment at CERN

Muon g-2 today: Data collection

Raw statistics [xBNL]

Run-1 Publication

Quantity	Correction terms (ppb)	Uncertainty (ppb)
$\overline{\omega_a^m}$ (statistical)		434
ω_a^m (systematic)	• • •	56
C_{e}	489	53
$\tilde{C_p}$	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q	-17	92
$\mu_p'(34.7^{\circ})/\mu_e$		10
m_{μ}/m_e		22
$g_e/2$	•••	0
Total systematic		157
Total fundamental factors		25
Totals	544	462

Published on PRL – 7th April 2021

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

Updated: (25 B. Abi,⁴⁴ T. Albahri,³⁹ S. Al-Kilani,³⁶ D. Allspach,⁷ L. P. Alonzi,⁴⁸ A. Anastasi,^{11,a} A. Anisenkov,^{4,b} F. Azfar,⁴⁴ K. Badgley,⁷ S. Baeßler,^{47,c} I. Bailey,^{19,d} V. A. Baranov,¹⁷ E. Barlas-Yucel,³⁷ T. Barrett,⁶ E. Barzi,⁷ A. Basti,^{11,32} F. Bedeschi,¹¹ A. Behnke,²² M. Berz,²⁰ M. Bhattacharya,⁴³ H. P. Binney,⁴⁸ R. Bjorkquist,⁶ P. Bloom,²¹ J. Bono,⁷ E. Bottalico,^{11,32} Muon T. Bowcock,³⁹ D. Boyden,²² G. Cantatore,^{13,34} R. M. Carey,² J. Carroll,³⁹ B. C. K. Casey,⁷ D. Cauz,^{35,8} S. Ceravolo,⁹ R. Chakraborty,³⁸ S. P. Chang,^{18,5} A. Chapelain,⁶ S. Chappa,⁷ S. Charity,⁷ R. Chislett,³⁶ J. Choi,⁵ Z. Chu,^{26,e} T. E. Chupp,⁴² M. E. Convery,⁷ A. Conway,⁴¹ G. Corradi,⁹ S. Corrodi,¹ L. Cotrozzi,^{11,32} J. D. Crnkovic,^{3,37,43} S. Dabagov,^{9,f}
P. M. De Lurgio,¹ P. T. Debevec,³⁷ S. Di Falco,¹¹ P. Di Meo,¹⁰ G. Di Sciascio,¹² R. Di Stefano,^{10,30} B. Drendel,⁷
A. Driutti,^{35,13,38} V. N. Duginov,¹⁷ M. Eads,²² N. Eggert,⁶ A. Epps,²² J. Esquivel,⁷ M. Farooq,⁴² R. Fatemi,³⁸ C. Ferrari,^{11,14}
M. Fertl,^{48,16} A. Fiedler,²² A. T. Fienberg,⁴⁸ A. Fioretti,^{11,14} D. Flay,⁴¹ S. B. Foster,² H. Friedsam,⁷ E. Frlež,⁴⁷ 20 N. S. Froemming,^{48,22} J. Fry,⁴⁷ C. Fu,^{26,e} C. Gabbanini,^{11,14} M. D. Galati,^{11,32} S. Ganguly,^{37,7} A. Garcia,⁴⁸ D. E. Gastler,² J. George,⁴¹ L. K. Gibbons,⁶ A. Gioiosa,^{29,11} K. L. Giovanetti,¹⁵ P. Girotti,^{11,32} W. Gohn,³⁸ T. Gorringe,³⁸ J. Grange,^{1,42} 15 S. Grant,³⁶ F. Gray,²⁴ S. Haciomeroglu,⁵ D. Hahn,⁷ T. Halewood-Leagas,³⁹ D. Hampai,⁹ F. Han,³⁸ E. Hazen,² J. Hempstead,⁴⁸ S. Henry,⁴⁴ A. T. Herrod,^{39,d} D. W. Hertzog⁽⁶⁾,⁴⁸ G. Hesketh,³⁶ A. Hibbert,³⁹ Z. Hodge,⁴⁸ J. L. Holzbauer,⁴³ K. W. Hong,⁴⁷ R. Hong,^{1,38} M. Iacovacci,^{10,31} M. Incagli,¹¹ C. Johnstone,⁷ J. A. Johnstone,⁷ P. Kammel,⁴⁸ M. Kargiantoulakis,⁷ M. Karuza,^{13,45} J. Kaspar,⁴⁸ D. Kawall,⁴¹ L. Kelton,³⁸ A. Keshavarzi,⁴⁰ D. Kessler,⁴¹ 10 K. S. Khaw,^{27,26,48,e} Z. Khechadoorian,⁶ N. V. Khomutov,¹⁷ B. Kiburg,⁷ M. Kiburg,^{7,21} O. Kim,^{18,5} S. C. Kim,⁶ Y. I. Kim,⁵ B. King,^{39,a} N. Kinnaird,² M. Korostelev,^{19,d} I. Kourbanis,⁷ E. Kraegeloh,⁴² V. A. Krylov,¹⁷ A. Kuchibhotla,³⁷ N. A. Kuchinskiy,¹⁷ K. R. Labe,⁶ J. LaBounty,⁴⁸ M. Lancaster,⁴⁰ M. J. Lee,⁵ S. Lee,⁵ S. Leo,³⁷ B. Li,^{26,1,e} D. Li,^{26,g} L. Li,^{26,e} I. Logashenko,^{4,b} A. Lorente Campos,³⁸ A. Lucà,⁷ G. Lukicov,³⁶ G. Luo,²² A. Lusiani,^{11,25} A. L. Lyon,⁷ B. MacCoy,⁴⁸ R. Madrak,⁷ K. Makino,²⁰ F. Marignetti,^{10,30} S. Mastroianni,¹⁰ S. Maxfield,³⁹ M. McEvoy,²² W. Merritt,⁷ A. A. Mikhailichenko,^{6,a} J. P. Miller,² S. Miozzi,¹² J. P. Morgan,⁷ W. M. Morse,³ J. Mott,^{2,7} E. Motuk,³⁶ A. Nath,^{10,31} 5 D. Newton,^{39,a,d} H. Nguyen,⁷ M. Oberling,¹ R. Osofsky,⁴⁸ J.-F. Ostiguy,⁷ S. Park,⁵ G. Pauletta,^{35,8} G. M. Piacentino,^{29,12} R. N. Pilato,^{11,32} K. T. Pitts,³⁷ B. Plaster,³⁸ D. Počanić,⁴⁷ N. Pohlman,²² C. C. Polly,⁷ M. Popovic,⁷ J. Price,³⁹ B. Quinn,⁴³ N. Raha,¹¹ S. Ramachandran,¹ E. Ramberg,⁷ N. T. Rider,⁶ J. L. Ritchie,⁴⁶ B. L. Roberts,² D. L. Rubin,⁶ L. Santi,^{35,8} D. Sathyan,² H. Schellman,^{23,h} C. Schlesier,³⁷ A. Schreckenberger,^{46,2,37} Y. K. Semertzidis,^{5,18} Y. M. Shatunov,⁴ <u>Run-1</u> D. Shemyakin,^{4,b} M. Shenk,²² D. Sim,³⁹ M. W. Smith,^{48,11} A. Smith,³⁹ A. K. Soha,⁷ M. Sorbara,^{12,33} D. Stöckinger,²⁸ 01-May'18 J. Stapleton,⁷ D. Still,⁷ C. Stoughton,⁷ D. Stratakis,⁷ C. Strohman,⁶ T. Stuttard,³⁶ H. E. Swanson,⁴⁸ G. Sweetmore,⁴⁰ ,19 OZ-May D. A. Sweigart,⁶ M. J. Syphers,^{22,7} D. A. Tarazona,²⁰ T. Teubner,³⁹ A. E. Tewsley-Booth,⁴² K. Thomson,³⁹ V. Tishchenko,³ 02-) N. H. Tran,² W. Turner,³⁵ E. Valetov,^{20,19,27,d} D. Vasilkova,³⁶ G. Venanzoni,¹¹ V. P. Volnykh,¹⁷ T. Walton,⁷ M. Warren,³⁶ A. Weisskopf,²⁰ L. Welty-Rieger,⁷ M. Whitley,³⁹ P. Winter,¹ A. Wolski,^{39,d} M. Wormald,³⁹ W. Wu,⁴³ and C. Yoshikawa⁷

31/10/23

What is the Muon g-2?

The intrinsic magnetic moment of a particle with spin is:

The g-factor (gyromagnetic) defines the coupling between the spin and the magnetic field: $QED \ \gamma \ \xi$

- g = 1 classic theory;
- *g* = 2 Dirac quantum theory;
- g = 2.00233... quantum field theory.

- Muons are injected in a magnetic field of **1.45 T**
- When a muon moves in a uniform magnetic field its spin rotates faster than its momentum (if g>2) and the difference between the spin and momentum angular velocity is the anomalous precession velocity ω_a:

• 4 nature gifts allow to reach this very high precision:

- 4 nature gifts allow to reach this very high precision:
 - 1. Muons strongly polarized (95%):
 - It is possible thanks to the weak pion decay

- 4 nature gifts allow to reach this very high precision:
 - 1. Muons strongly polarized (95%):
 - It is possible thanks to the weak pion decay
 - 2. Precession frequency proportional to (g-2)

$$\succ \quad \overrightarrow{\omega}_a = \overrightarrow{\omega}_S - \overrightarrow{\omega}_c = \left(\frac{g-2}{2}\right) \cdot \frac{e\overrightarrow{B}}{m}$$

- 4 nature gifts allow to reach this very high precision:
 - 1. Muons strongly polarized (95%):
 - It is possible thanks to the weak pion decay
 - 2. Precession frequency proportional to (g-2)

$$\succ \quad \overrightarrow{\omega}_a = \overrightarrow{\omega}_S - \overrightarrow{\omega}_c = \left(\frac{g-2}{2}\right) \cdot \frac{e\overrightarrow{B}}{m}$$

3. Magic momentum $P_{\mu} = 3.094$ Gev/c:

$$\succ \quad \vec{\omega}_a = \frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right]$$

- 4 nature gifts allow to reach this very high precision:
 - 1. Muons strongly polarized (95%):
 - It is possible thanks to the weak pion decay
 - 2. Precession frequency proportional to (g-2)

 $\succ \quad \overrightarrow{\omega}_a = \overrightarrow{\omega}_S - \overrightarrow{\omega}_c = \left(\frac{g-2}{2}\right) \cdot \frac{e\overrightarrow{B}}{m}$

3. Magic momentum $P_{\mu} = 3.094 \text{ Gev/c:} \quad \gamma = \sqrt{1 + \frac{1}{a_{\mu}}} \sim 29.3$

$$\succ \quad \vec{\omega}_a = \frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right]$$

- **4 nature gifts** allow to reach this very high precision:
 - 1. Muons strongly polarized (95%):
 - It is possible thanks to the weak pion decay
 - 2. Precession frequency proportional to (g-2)

$$\omega_{a} = \omega_{S} - \omega_{c} = \left(\frac{g-1}{2}\right) \cdot \frac{\sigma_{L}}{m}$$
3. Magic momentum $P_{\mu} = 3.094 \text{ Gev/c:} \quad \gamma = \sqrt{1 + \frac{1}{a_{\mu}}} \sim 29.3$

$$\omega_{a} = \frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right]$$

 $(a-2) \rho \vec{R}$

4. Positron emitted preferably in direction of the muon spin

Time after injection [us]

30

50

N / 149.2 ns

 10^{7}

a_{μ} Extraction (simplified)

The magnetic anomaly a_{μ} is obtained by measuring many quantities:

 $\widetilde{\omega}'_p$ represents the magnetic field as proton Larmor frequency (in a water sample) weighted with the beam distribution inside the ring.

g-2 short recap: The Ring

24 electromagnetic calorimeters:

- 54 PbF2 crystals read by 54 SIPMs.
- Crystal length 14 cm, $15 X_0$.
- Cherenkov light faster than showers (signal width ~nanoseconds).
- Laser calibration system, allows the energy and time calibration of the calorimeters
- Two straw tubes trackers.
 - 32 planes of drift tubes filled with a 50:50 mixture of Ar/Ethane.

ω_a measurement

 The simplest function which describes the number of emitted positron from muon decay (so called "<u>wiggle plot</u>") is:

$$N(t) = N_0 \cdot e^{-\frac{t}{\tau}} \cdot (1 + A \cdot \cos(\omega_a \cdot t + \varphi))$$

• The **FFT** of the fit's residual shows many frequency peaks due to **beam dynamics** effects

that are not modeled by the previous function.

ω_a measurement

Taking into account for the beam motion, the fit function gets more

complicated up to contain up to **27 parameters**.

- The magnetic field is measured by:
 - **<u>378 fixed probes</u>** around the ring;
 - <u>17 NMR probes</u> moved around the ring via a trolley.
 - The tracker measures the muon distribution around the ring.
 - The magnetic field map is <u>weighted with</u>
 <u>the muon distribution</u> to obtain the effective field experienced by muons.

For the measurement of a_{μ} the measured ω_a and ω_p need to be corrected by:

Beam dynamics corrections $R'_{\mu} \approx \frac{f_{clock}\omega_{a}^{m}(1 + C_{e} + C_{p} + C_{ml} + C_{pa} + C_{dd})}{f_{calib} < \omega'_{p}(x, y, \phi) \times M(x, y, \phi) > (1 + B_{k} + B_{q})}$ Transient field corrections

The total size of the corrections in Run-2/3 is 622 ppb dominated by C_e and C_p . Corrections are small, but dominated Run-1 systematics...

Run-1 systematic: Where can we improve?

Run-2/3 - Improvements

Run-2/3 - Improvements

E.Bottalico - (EINN 2023)

Run-2/3 – Improvements: Statistics

• Factor 4.7 more data in Run-2/3 than Run-1

Dataset	Statistical Error [ppb]		
Run-1	434		
Run-2/3	201		
Run-1 + Run-2/3	185		

Run-2/3 - Improvements

1000 2000 3000 4000 5000 6000 Energy [MeV] **Analysis Improvements**

Run-2

Run-3

Run-2 Data

Run-2/3 Clustering

405.20

31/10/23

E.Bottalico - (EINN 2023)

- Run-1 had damaged resistors in 2/32 quad plates leading to unstable beam storage
- Resistors re-designed & replaced before Run-2

- C_{pa} uncertainty is reduced (75 ppb \rightarrow 13 ppb)
- Beam oscillation frequencies are also more stable

• Temperature stability makes magnetic field less variable

• Temperature stability makes magnetic field less variable

• Temperature stability makes magnetic field less variable

Last 18% of Run-2/3 has upgraded, stronger kicker

- Momentum distribution more centered
- Lower E-field correction C_e

- Phase space matching improved
- Smaller beam oscillations

29

Run-2/3 - Improvements

Run-2/3 – Improvements: Improved measuremenet

• Pulsing quads vibrate → oscillating magnetic field

For Run-1 analysis, we had limited measurement positions Largest Run-1 systematic: 92 ppb reduced to 20 ppb

Run-2/3 – Improvements: Improved measuremenet

• Kicker creates eddy currents → transient magnetic field

- Faraday magnetometer
- Run-2/3 has lower vibration noise vs. Run-1
- Uncertainty reduced from **37** ppb to **13** ppb

31/10/23

Run-2/3 - Improvements

E.Bottalico - (EINN 2023)

Run-2/3 – Improvements: Analysis improvements

- 2 e⁺ arriving at same time can be mistaken for 1: can bias ω_a
- Reduced uncertainty by:
 - Improved reconstruction
 - Improved correction algorithms

Run-1: 53 ppb to Run-2/3: 32 ppb

- E-field correction depends on muon momentum distribution
- Now include correlations between momentum & time of injection

Blind analysis and unblinding

- The analysis is performed with a double blinding one software and one hardware.
- Hardware blinding comes from altering our clock

frequency randomly <u>+25ppm shift</u>

• On <u>24th July</u> the secret

numbers have been unveiled, revealing the hidden frequency

Run-2/3 Result

a_u(FNAL) = 0.00 116 592 055(24) [203 ppb]

 Both FNAL and BNL dominated by statistical error

 Combined world average dominated by FNAL values.

31/10/23

Run-2/3 Result

- Datasets were taken at slightly different field settings
- Allows a cross check with one of the most basic "handles"

Run-2/3 Uncertainties summary

Run-2/3 Publication

Published on PRL – 17th October 2023!

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

D. P. Aguillard⁰, ³³ T. Albahri⁰, ³⁰ D. Allspach⁰, ⁷ A. Anisenkov⁰, ^{4,a} K. Badgley⁰, ⁷ S. Baeßler⁰, ^{35,b} I. Bailey⁰, ^{17,c} L. Bailey⁽⁰⁾,²⁷ V. A. Baranov,^{15,d} E. Barlas-Yucel⁽⁰⁾,²⁸ T. Barrett⁽⁰⁾,⁶ E. Barzi⁽⁰⁾,⁷ F. Bedeschi⁽⁰⁾,¹⁰ M. Berz⁽⁰⁾,¹⁸ M. Bhattacharya[®], ⁷ H. P. Binney[®], ³⁶ P. Bloom[®], ¹⁹ J. Bono[®], ⁷ E. Bottalico[®], ³⁰ T. Bowcock[®], ³⁰ S. Braun[®], ³⁶ M. Bressler[®], ³² G. Cantatore[®], ^{12,e} R. M. Carey[®], ² B. C. K. Casey[®], ⁷ D. Cauz[®], ^{26,f} R. Chakraborty[®], ²⁹ A. Chapelain[®], ⁶ S. Chappa,⁷ S. Charity⁰,³⁰ C. Chen⁰,^{23,22} M. Cheng⁰,²⁸ R. Chislett⁰,²⁷ Z. Chu⁰,^{22,g} T. E. Chupp⁰,³³ C. Claessens⁰,³⁶ M. E. Convery[®],⁷ S. Corrodi[®],¹ L. Cotrozzi[®],^{10,h} J. D. Crnkovic[®],⁷ S. Dabagov[®],^{8,i} P. T. Debevec[®],²⁸ S. Di Falco[®],¹⁰ G. Di Sciascio[®],¹¹ B. Drendel[®],⁷ A. Driutti[®],^{10,h} V. N. Duginov[®],^{15,d} M. Eads[®],²⁰ A. Edmonds[®],² J. Esquivel[®],⁷ M. Farooq[®], ³³ R. Fatemi[®], ²⁹ C. Ferrari[®], ^{10,j} M. Fertl[®], ¹⁴ A. T. Fienberg[®], ³⁶ A. Fioretti[®], ^{10,j} D. Flay[®], ³² S. B. Foster[®], ² H. Friedsam,⁷ N. S. Froemming,²⁰ C. Gabbanini⁽⁰⁾,^{10,j} I. Gaines⁽⁰⁾,⁷ M. D. Galati⁽⁰⁾,^{10,h} S. Ganguly⁽⁰⁾,⁷ A. Garcia⁽⁰⁾,³⁶ J. George[®],^{32,k} L. K. Gibbons[®],⁶ A. Gioiosa[®],^{25,1} K. L. Giovanetti[®],¹³ P. Girotti[®],¹⁰ W. Gohn[®],²⁹ L. Goodenough[®],⁷ T. Gorringe[®],²⁹ J. Grange[®],³³ S. Grant[®],^{1,27} F. Gray[®],²¹ S. Haciomeroglu[®],^{5,m} T. Halewood-Leagas[®],³⁰ D. Hampai[®],⁸ F. Han^(b),²⁹ J. Hempstead^(b),³⁶ D. W. Hertzog^(b),³⁶ G. Hesketh^(b),²⁷ E. Hess,¹⁰ A. Hibbert,³⁰ Z. Hodge^(b),³⁶ K. W. Hong^(b),³⁵ R. Hong⁰,^{29,1} T. Hu⁰,^{23,22} Y. Hu⁰,^{22,g} M. Iacovacci⁰,^{9,n} M. Incagli⁰,¹⁰ P. Kammel⁰,³⁶ M. Kargiantoulakis⁰, M. Karuza⁽⁰⁾, ^{12,0} J. Kaspar, ³⁶ D. Kawall⁽⁰⁾, ³² L. Kelton⁽⁰⁾, ²⁹ A. Keshavarzi⁽⁰⁾, ³¹ D. S. Kessler⁽⁰⁾, ³² K. S. Khaw⁽⁰⁾, ^{23,22} Z. Khechadoorian[®],⁶ N. V. Khomutov[®],¹⁵ B. Kiburg[®],⁷ M. Kiburg[®],^{7,19} O. Kim[®],³⁴ N. Kinnaird[®],² E. Kraegeloh[®],³³ V. A. Krylov⁽⁰⁾, ¹⁵ N. A. Kuchinskiy, ¹⁵ K. R. Labe⁽⁰⁾, ⁶ J. LaBounty⁽⁰⁾, ³⁶ M. Lancaster⁽⁰⁾, ³¹ S. Lee⁽⁰⁾, ⁵ B. Li⁽⁰⁾, ^{22,1,p} D. Li⁽⁰⁾, ^{22,q} L. Li[®],^{22,g} I. Logashenko[®],^{4,a} A. Lorente Campos[®],²⁹ Z. Lu[®],^{22,g} A. Lucà[®],⁷ G. Lukicov[®],²⁷ A. Lusiani[®],^{10,r} A. L. Lyon[®],⁷ B. MacCoy[®],³⁶ R. Madrak[®],⁷ K. Makino[®],¹⁸ S. Mastroianni[®],⁹ J. P. Miller[®],² S. Miozzi[®],¹¹ B. Mitra[®],³⁴ J. P. Morgan[®],⁷ W. M. Morse[®],³ J. Mott[®],^{7,2} A. Nath[®],^{9,n} J. K. Ng[®],^{23,22} H. Nguyen[®],⁷ Y. Oksuzian[®],¹ Z. Omarov[®],^{16,5} R. Osofsky[®],³⁶ S. Park[®],⁵ G. Pauletta,^{26,s} G. M. Piacentino,^{25,t} R. N. Pilato[®],³⁰ K. T. Pitts[®],^{28,u} B. Plaster[®],²⁹ D. Počanić⁽⁶⁾, ³⁵ N. Pohlman⁽⁶⁾, ²⁰ C. C. Polly⁽⁶⁾, ⁷ J. Price⁽⁶⁾, ³⁰ B. Quinn⁽⁶⁾, ³⁴ M. U. H. Qureshi⁽⁶⁾, ¹⁴ S. Ramachandran⁽⁶⁾, ^{1,k} E. Ramberg,⁷ R. Reimann[®],¹⁴ B. L. Roberts[®],² D. L. Rubin[®],⁶ L. Santi[®],^{26,f} C. Schlesier[®],^{28,v} A. Schreckenberger[®],⁷ Y. K. Semertzidis[®],^{5,16} D. Shemyakin[®],^{4,a} M. Sorbara[®],^{11,w} D. Stöckinger[®],²⁴ J. Stapleton[®],⁷ D. Still,⁷ C. Stoughton[®],⁷ D. Stratakis[®],⁷ H. E. Swanson[®],³⁶ G. Sweetmore[®],³¹ D. A. Sweigart[®],⁶ M. J. Syphers[®],²⁰ D. A. Tarazona[®],^{6,30,18} T. Teubner^(a), ³⁰ A. E. Tewsley-Booth^(a), ^{29,33} V. Tishchenko^(a), ³ N. H. Tran^(a), ^{2,x} W. Turner^(a), ³⁰ E. Valetov^(a), ¹⁸ D. Vasilkova[©],^{27,30} G. Venanzoni[©],^{30,1} V. P. Volnykh[©],¹⁵ T. Walton[©],⁷ A. Weisskopf[©],¹⁸ L. Welty-Rieger,⁷ P. Winter[©],¹ Y. Wu⁰,¹ B. Yu⁰,³⁴ M. Yucel⁰,⁷ Y. Zeng⁰,^{23,22} and C. Zhang³⁰

PhysRevLett.131.161802 (The Muon q-2 Collaboration)

31/10/23

Quantity	Correction (ppb)	Uncertainty (ppb)
$\overline{\omega_a^m}$ (statistical)		201
ω_a^m (systematic)	•••	25
C_{e}	451	32
C_p	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$		46
B_k	-21	13
B_q	-21	20
$\mu_{p}'(34.7^{\circ})/\mu_{e}$		11
m_u/m_e		22
$g_e/2$		0
Total systematic for \mathcal{R}'_{μ}		70
Total external parameters		25
Total for a_{μ}	622	215

E.Bottalico - (EINN 2023)

Theory comparison – The puzzle

- Theory prediction is less clear now.
- Comparing with WP (2020) a large discrepancy is found 5.0 σ

Theory comparison – The puzzle in the puzzle

- Theory prediction is less clear now.
- Comparing with WP (2020) a large discrepancy is found 5.0 σ

 Considering BMW result for the HVP term, instead of WP the discrepancy is reduced.

Theory comparison – The puzzle³

- New results from SND2k and CMD-3 since White Paper, CMD-3 shows a discrepancy.
- From lattice side, other groups are improving the precision of the calculation, converging on a common value.

Dispersive Approach

E.Bottalico - (EINN 2023)

Muon g-2 - Run-4/5/6 further improvements

- During Run-4, the quadruple RF dampening system has been installed and tuned.
- In Run-5 the RF has been used for production data, in order to reduce radial oscillation of the beam
- During Run-5/6 has been installed a Minimally intrusive Scintillating Fiber detector (MiniSciFi) useful to measure the time momentum correlation for E-field correction and the CBO oscillation.

CBO amplitude: factor of 8.6

- The data **acquisition** is **finished** on **9th July 2023**.
- We reached the TDR goal of 21 BNL on 27th February 2023.
- Run-4/5/6 result is expected in \sim 2025.

Conclusion

• We've determined a_{μ} to an unprecedented **203 ppb** precision

New result is in excellent agreement with Run-1 & BNL

More than halved the total uncertainty from Run-1

Improved our design goal with systematic uncertainty of 70 ppb.

• There is **more data** to analyze and we'll squeeze uncertainty down further in our future results!

"The closer you look the more there is to see" F. Jegerlehner

Thank you!!!

• For any question or just to have a chat – <u>elia.bottalico@liverpool.ac.uk</u>

BACK-UP

Kickers and Inflector

- The **inflector** cancels the storage ring field such that the muons are not deflected by the main **1.45 T** field.
- Superconducting, operational current ~2.6 kA.
- 3 Kickers are necessary to inject magic momentum muons along the magic radius (7.11 m) with a required kick at order of <u>10 mrad</u>.
- 4 kA current in 200 ns pulse.
- Design kick strength has been reached in Run-3 (~160 kV).

<u>Quadrupoles</u>

- The Electrostatic Quadrupoles (ESQ) system allows to strongly focus the beam vertically, four ESQ stations are symmetrically placed around the ring.
- The plates are raised from ground to operating voltage prior to each *fill* with RC charging time constants of <u>~5 μs</u>.
- This procedure, known as scraping, initially displaces the beam vertically and horizontally with respect to the central closed orbit.

ω_a measurement – CBO oscillation

Given the restoring force by radial magnetic field, the beam oscillates radially (vertically too)

as the betatron frequency: $\omega_{BO} = \omega_c \sqrt{1-n}$, where **n** is the field-index.

- The beam is measured by detectors, calorimeters and trackers.
- The $\omega_{BO} < \omega_{C}$, so calorimeters see a different phase at each turn, measuring an oscillation

called <u>Coherent Betatron Oscillation</u> (CBO), given by $\omega_{CBO} = \omega_C - \omega_{BO}$

$$2\pi f_{CBO} = \omega_C - \omega_{BO} = \omega_C (1 - \sqrt{1 - n})$$

$$\omega_{CBO} = 2.34 \, rad/\mu s$$

Where $T_C \sim 0.149 \ ns$ and $n \sim 0.108$

Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overrightarrow{\omega_{a}} = \frac{e}{m} \left[a_{\mu} \overrightarrow{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \left(\overrightarrow{\beta} \times \overrightarrow{E} \right) - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\overrightarrow{\beta} \cdot \overrightarrow{B} \right) \overrightarrow{\beta} \right]$$

This term introduces a bias on ω_a that needs

to be corrected by Electric Field correction:

$$C_e = 2n(1-n)\beta^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$
 is proportional to the

equilibrium radius distribution x_e .

$$C_e \sim 489 \, ppb$$

Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overline{\omega_{a}} = \frac{e}{m} \left[a_{\mu} \overline{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) (\vec{\beta} \times \vec{E}) - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$

$$C_{p} \sim 200 \ ppb$$

a_{μ} systematic sources

Many systematics come from effects that <u>change</u> the <u>phase</u> of the detected positrons <u>over time</u> and introduce a bias on ω_a :

$$cos(\omega_a t + \phi(t)) = cos(\omega_a t + \phi_0 + \phi' t + ...)$$
$$= cos((\omega_a + \phi')t + \phi_0 + ...)$$

In general, anything that changes from <u>early-to-late</u> within each muon fill can be a cause of systematic error, as:

- Beam distortion
- Muon losses
- Varying lifetime
- Rate dependent reconstruction

Beam dynamics correction to ω_a : C_{lm}

 C_{lm} : describes the motion introduced on ω_{a} phase due

to the loss of muon during the *fill*. It's explained by:

oss of muon during the *fill*. It's explained by: 1.

phase;

The number of loss muon change as function of 2.

momentum.

$$\Delta \omega_a = \frac{d\varphi}{dt} = \frac{d\varphi}{dp} \cdot \frac{dp}{dt}$$

$$C_{lm} < 20 \ ppb$$

- The measured *g*-2 phase of the muon is decay vertex position dependent.
- It is obtained as weighted average of the phases measured by each (x,y) pair

position.

Phase acceptance: Beam Motion Effects

VERTICAL WIDTH VARIATION

Beam dynamics correction to $\boldsymbol{\omega}_{a}$: C_{pa}

 C_{pa} : it is a Phase Acceptance effect. It is due to:

- 1. Beam variation during the *fill;*
- 2. Phase measured as function of the decay

position. 1) 2)
$$\Delta \omega_a = \frac{d\varphi}{dt} = \frac{dY_{RMS}}{dt} \cdot \frac{d\varphi}{dY_{RMS}}$$

The effect was large in Run1 due to *broken resistors*

$$C_{pa} \sim 180 \ ppb$$

We expect a reduction in Run2/3 (~50ppb/~20ppb)

•	These are the results for the BD		Correction Factor [npb]	Uncertainty [ppb]
		ω_a (stat.)		434
corre accep	corrections from Run-1, the phase	ω_a (syst.)	_	56
		f_b/f_0	_	2
		C _e	489	53
		$C_{ ho}$	180	13
	acceptance (L_{na}) correction was one	C_{ml}	-11	5
	· pu ·	C _{pa}	-158	75
	of the topic I addressed during my PhD.	$f_{calib}\left\langle \omega_{p}^{\prime}(x,y,\phi)\cdot M(x,y,\phi) ight angle$	—	56
		B_q	-17	92
			-27	37
•	Now analysis is ongoing to finalize the	$\mu'_{p}(34.7^{\circ}C)/\mu_{e}$ [PCK77]	—	10
		m_{μ}/m_{e} [LAMPF-99; CD-2018]	—	22
		$g_e/2$ [HFG08]	_	0
	Run-2/3 beam dynamics corrections,	Total Systematic	—	157
		Total Fundamental Factors	— [4 4	25
		ισται	544	401
	stay tuned!			