

EINN 2023

on Electromagnetic Interactions with Nuc

Particle identification with the ePIC detector at the EIC

Roberto Preghenella

INFN Bologna

on behalf of the ePIC Collaboration

EINN 2023

15th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei 31 October - 4 November 2023, Paphos

The Electron-Ion Collider

a machine that will unlock the secrets of the strongest force in Nature is a future electron-proton and electron-ion collider at BNL (USA) foreseen to start operation in early 2030's

- the major US project in the field of nuclear physics
 - one of the most important scientific facilities for 0 the future of nuclear and subnuclear physics

the world's first collider for

- polarised electron-proton (and light ions) \bigcirc
- electron-nucleus collisions 0

will allow to explore the secrets of QCD

- understand origin of mass & spin of the nucleons 0
- extraordinary 3D images of the nuclear structure Ο

J Yeck

C Montag

B Surrow

Particle identification at EIC

one of the major challenges for the detector

• physics requirements

- pion, kaon and proton ID
- over a wide range $|\eta| \le 3.5$
- \circ with better than 3σ separation
- significant pion/electron suppression

• momentum-rapidity coverage

- forward: up to 50 GeV/c
- central: up to 6 GeV/c
- backward: up to 10 GeV/c

demands different technologies

Particle identification ~ particle velocity

particle velocity + momentum (from tracking) or energy (from calo) = PID

- velocity measurement yields mass
 - $p = m \beta y$ 0
 - E = m y

direct velocity measurement

- time-of-flight Ο
 - record time signal at multiple locations: $\Delta t = t_{stop} t_{start}$
 - measure trajectory length and calculate: $\beta c = L / \Delta t$

velocity-dependent interactions

- Ο
- \bigcirc
 - θ_{c} measured wrt. track direction
 - $\theta_{\rm c}$ measured wrt. track direction performance also depends on tracking $\cos \theta = \frac{1}{n\beta}$

other techniques for e-ID

- Brehmsstralung Ο
- transition radiation \bigcirc
- calorimetry: E / p 0

ePI

Particle identification techniques

EIC detector need more than one technique to cover the entire momentum ranges

The ePIC experiment

layout of the barrel detector

tracking M Posik

- new 1.7 T magnet 0
- Si-MAPS + MPGDs \bigcirc
- calorimetry D Hornidge

- e-side: PbWO₄ EMCal 0
- barrel: imaging EMCal 0
- h-side: finely segmented 0
- outer barrel HCal \bigcirc

particle ID

- AC-LGAD TOF \bigcirc
- pfRICH Ο
- hpDIRC Ο
- dRICH Ο

Particle identification in ePIC

synergy of Cherenkov imaging and time-of-flight techniques

pfRICH – proximity focusing RICH

a classical proximity focusing RICH with timing capability for MIPs

Cherenkov radiator

- 2.5 cm thick aerogel (n = 1.04-1.05)
- with 300 nm acrylic filter
- \circ $\langle N_{pe} \rangle \sim 11-12$

• proximity gap

- 45 cm long
- nitrogen filled

HRPPD photosensors

- 120 x 120 mm tiles
- pixelation: 32 x 32 pads
- DC-coupled

• timing capability

- MIP produces UV light (dozens of pe) in the HRPPD window
- \circ provide time with σ < 20 ps

pfRICH acceptance optimisation

use side wall mirrors to increase pseudorapidity acceptance

without wall mirrors

pfRICH performance simulation

reconstruction algorithm capable of

angles in agreement with expectations

handling complex categories

0

0

complete Geant4 simulation, event-level digitisation and reconstruction

up to ~ 2.5 GeV/c

• 3σ π/K separation

 \circ up to ~ 9.0 GeV/c

dRICH – dual-radiator RICH

compact and cost-effective solution for broad momentum coverage at forward rapidity

- **radiators:** aerogel (n ~ 1.02) and C₂F₆ (n ~ 1.0008)
- **mirrors:** large outward-reflecting, 6 open sectors
- **Sensors:** 3x3 mm² pixel, 0.5 m² / sector
 - single-photon detection inside high B field (~ 1 T)
 - outside of acceptance, reduced constraints
 - SiPM optical readout

example event (accumulated hits)

dRICH beam tests

detector prototype to study dual radiator performance and interplay

dRICH beam tests

successful beam test with prototype SiPM photodetector units (CERN-PS, ended on 18th October)

ePi

dRICH performance simulation

within ePIC simulation framework

continuously improving detector description and optimisation

- preliminary optimisation of dRICH optics
 - single mirror configuration
 - optimise focus in the most demanding region, $2.5 < \eta < 3.5$
 - target resolution of ~ 0.3 mrad
- realistic tiling and shaping of SiPM readout surface
 - grouping of SiPM according to 256-channel PDU
 - with 3 mm gap between PDU

π/K separation power

> 3σ continuous separation

in the desired momentum range up to ~ 50 GeV/c

hpDIRC – high-performance DIRC

fast focusing DIRC with high-resolution 3D (x,y,t) reconstruction

• crucial components

- innovative <u>3-layer spherical lenses</u>
- compact fused silica <u>expansion volumes</u>
- fast photodetection, small pixel MCP-PMT

hpDIRC creates focused images

• significantly improved resolution

hpDIRC performance validation

synergic beam test with PANDA prototype at CERN PS in 2018

observed pattern (20 deg polar angle)

π /p separation power at 7 GeV/c

• measurements compared to simulation

- single-photon Cherenkov-angle resolution
- number of photons
- π/p separation power

• are in excellent agreement

- same code used for ePIC hpDIRC GEANT studies
- good confidence in hpDIRC performance simulation

hpDIRC performance in B field

simulation studies of the impact of magnetic field on hit pattern

detector plane located in modest magnetic field < 0.5 T

Cherenkov angle resolution per photon (SPR)

Geant4 - B-field off - B-field on in pixel-based (geometric) reconstruction 40 60 80 100 120 Polar angle (deg)

no significant impact on the performance

B = ON

based on AC-LGAD technology, also used in ePIC far-forward instrumentation

TOF – Time of Flight

Detector	Area	Channel size	Channel number	Time resolution	Spatial resolution	Material budget
Barrel TOF	~10 m ²	0.5mm x 10mm	~2.2 M	35 ps	30 μm in r·φ	0.01 X0
Forward TOF	$\sim 1.4 \text{ m}^2$	0.5mm x 0.5mm	~5.6 M	25 ps	$30 \ \mu m$ in x and y	0.05 X0

dielectric

DC contact

device termination

AC-coupled

electrodes

Barrel TOF detector layout

follows the design of STAR Intermediate Silicon Tracker

• tilted stave modules

- with overlaps in ϕ (full 2π azimuthal coverage)
- readout board on stave's ends (out of acceptance)
- room-temperature cooling for front-end electronics, ASIC

Forward TOF detector layout

based on the design of CMS Endcap Timing Layer

CMS Endcap Timing Layer

• two half DEEs

- convenient for installation & maintenance
- tiled by rectangular detector modules (three types, different lengths)
- room-temperature cooling for front-end electronics, ASIC

TOF performance simulation

ePI

detector geometry implemented in Geant, digitisation and integration in tracking software

Photosensors – HRPPD

smaller version of LAPPD MCP-PMT technology, being developed with Incom Inc.

DC-coupled HRPPD

- choice for backward RICH detector
 - for both mRICH and pfRICH layout
- 108 x 108 mm² active area (120 x 120 mm² total)
- high intrinsic time resolution
- \circ Iow DCR (compared to SiPM) ~ 1 kHz/cm²
- \circ IOW COSt (compared to other MCP-PMT)
 - possible application for DIRC

ongoing R&D

- optimisation of QE and pixelation
- characterisation in B field
 - gain and time resolution
- mechanical / electrical interface
 - with direct pixel readout

27

Possible HRPPD applications for the EIC

• backward RICH (pfRICH)

- low DCR noise (wrt. SiPM) and timing capability
- HRPPD is baseline photosensors as of November 2022

• barrel DIRC (hpDIRC)

- MCP-PMT are the leading sensor candidate technologies
 - established (PHOTONIS), more recent (PHOTEK)
- HRPPD expected to be more cost-effective

• forward RICH (dRICH)

- use is problematic
 - large magnetic field
 - with field lines ~ perpendicular to MCP channel

perspective for a sizeable production of ~ 150 HRPPDs if also hpDIRC adopts it

hpDIRC: total 72 HRPPD

Photosensors – SiPM

magnetic-field insensitive and cheap solution for the dRICH

• pros

- cheap
- high photon efficiency
- excellent time resolution
- insensitive to B field

• cons

- large DCR, ~ 50 kHz/mm² @ T = 24 °C
- not radiation tolerant
 - moderate fluence < 10¹¹ n_{ed}/cm²

R&D on mitigation strategies

- reduce DCR at low temperature
 - operation at T = -30 °C (or lower)
- recover radiation damage
 - in-situ high-temperature annealing
- exploit timing capabilities
 - with ALCOR (INFN) front-end chip

SiPM environment

moderate radiation, strong magnetic field

radiation damage estimates

1-MeV neutron equivalent fluence (1 fb⁻¹ ep running) 300 10¹⁰ R (cm) ePIC background group 10^{9} 250 beam-beam interactions only 108 107 200 10⁶ 150 10⁵ 104 100 10³ 10^{2} 50 10 -600 -400 200 400 600 -200 0 z (cm) location of dRICH photosensors assume fluence: ~ 10^7 neg / cm² / fb⁻¹ conservatively assume max fluence and 10x safety factor moderate radiation, 1000 fb⁻¹ integrated \mathscr{L} corresponds to ~ 10¹⁰ n_{er}/cm² MARCO magnetic field maps

non-uniform, strong magnetic field ~ 0.7 T field lines ~ parallel to photodetector surface

Summary

ePIC meets EIC PID needs with advanced detector technology

• PID is one of the major challenges for the ePIC detector at the EIC

- \circ physics requires high-purity π K p over large phase-space
- multiple techniques needed
 - time-of-flight, ring imaging Cherenkov
 - calorimetry for $e(\mu)$ identification

• selected detector technologies meet the requirements

- AC-LGAD TOF
- high-performance DIRC
- dual-radiator RICH
- proximity-focusing RICH

• ongoing R&D and engineering activities

- \circ risk reduction
- optimisation of technologies

END

dRICH beam tests

successful operation of SiPM with complete readout chain

00 -80 -60 -40 -20

0

20 40 60 80 100 hit - reference time (ns)

EMCal e/π separation power

excellent, up to 10^4 pion suppression

barrel SciGlass

Muon identification

ECCE

muon ID using a combination of EM and Hadron calorimetry

Total hadron interaction length: 6-7 λ_0 for central and 7-8 λ_0 for forward Pion punch through probability: 10^{-2} to 10^{-3} level

- Utilizing central track, barrel EMCal, EMCal active support and barrel HCal
- Pion rejection starting at 10⁻¹ at low p and saturate above 100:1 above a few GeV/c

dRICH photodetector unit

conceptual design of final layout

SiPM sensor matrices mounted on carrier PCB board

- 4x 64-channel SiPM array device (256 channels) for each unit
 - need modularity to realise curved readout surface
- 1240 photodetector units for full dRICH readout

EIC detector requirements for PID

definition of requirements in the Yellow Report

arXiv:2103.05419 [physics.ins-det]

Timing performance measurements with ALCOR

39

ePit

HRPPD tests in magnetic field

• pfRICH HRPPD will be exposed to a ~ 1.4 T magnetic field

• field lines at an angle of up 12.6 degrees to wrt. HRPPD normal

tests of HRPPD prototype in high magnetic field

- carried out by Argonne and Incom using g-2 calibration solenoid
- data analysis by eRD110 members of pfRICH team

• preliminary conclusion

 \circ gain in this high magnetic field can be fully restored by increasing HV from 925 to ~ 1075 V