# **DVCS** at the Precision Frontier

# V. M. BRAUN

## University of Regensburg

EINN2023, Paphos, 01.11.2023





Fs Thre

Threshold logarithms

NNLO evolution

Outlook

#### Nucleon Tomography

#### access to three-dimensional picture of the nucleon (M. Burkardt)



 $\hookrightarrow$  first two moments of transverse spin parton density

computer simulations:

M. Göckeler et al., Phys.Rev.Lett. 98 (2007) 222001

• Momentum transfer t defines the resolution of spacial imaging



LO CFs

Threshold logarithms

NNLO evolution

#### Wealth of new data



- High statistical accuracy
- Several beam energies
- Neutron/deuteron
- Coherent DVCS from <sup>4</sup>He
- Transverse polarization



2010 data of E07-007 and E08-025 [2109.02076]

# Towards NNLO accuracy

- Two-loop coefficient functions for DVCS
- Three-loop evolution equations for GPDS

✓(work in progress)

#### ② Resummation of threshold logarithms

- **3** Kinematic power corrections  $(\sqrt{-t}/Q)^k$ ,  $(m/Q)^k$ 
  - Twist-four corrections,  $(\sqrt{-t}/Q)^2$ ,  $(m/Q)^2$
  - Twist-six corrections

(work in progress)

1



| Motivation | NNLO CFs | Threshold logarithms | NNLO evolution | Kinematic power corrections | Outlook |
|------------|----------|----------------------|----------------|-----------------------------|---------|
|            |          |                      |                |                             |         |

#### **NNLO** coefficient functions

#### To the leading-twist accuracy

$$\mathcal{A}_{\mu\nu}^{\rm DVCS} = -g_{\mu\nu}^{\perp} V + \epsilon_{\mu\nu}^{\perp} A + \dots$$
$$V(\xi, Q^2) = \sum_q e_q^2 \int_{-1}^{1} \frac{dx}{\xi} C_V(x/\xi, Q^2/\mu^2) F_q(x, \xi, t, \mu) \,.$$

$$F_q(x,\xi) = \frac{1}{2P_+} \left[ H_q(x,\xi,t)\bar{u}(p')\gamma_+ u(p) + E_q(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\nu}\Delta_{\nu}}{2m_N}u(p) \right].$$

- $C_{V(A)}$  are functions of one variable  $x/\xi$
- real functions for  $|x| < \xi$
- can be continued analytically to  $|x/\xi| \ge 1$  using  $\xi \to \xi i\epsilon$  prescription
- $-C_V(-x/\xi) = -C_V(x/\xi), \quad C_A(-x/\xi) = +C_A(x/\xi)$



| Motivation | NNLO CFs | Threshold logarithms | NNLO evolution | Kinematic power corrections | Outlook |
|------------|----------|----------------------|----------------|-----------------------------|---------|
|            |          |                      |                |                             |         |
|            |          |                      |                |                             |         |

#### In perturbation theory

$$\begin{split} C(x/\xi,Q^2/\mu^2) &= C^{(0)}(x/\xi) + a_s C^{(1)}(x/\xi,Q^2/\mu^2) + a_s^2 C^{(2)}(x/\xi,Q^2/\mu^2) + \dots \qquad a_s = \frac{\alpha_s(\mu)}{4\pi} \\ \text{with, e.g., flavor-nonsinglet} & \text{X. D. Ji and J. Osborne, PRD 57, 1337 (1998)} \\ C_V^{(0)}(x/\xi) &= \frac{\xi}{\xi - x} - \frac{\xi}{\xi + x} , \\ C_V^{(1)}(x/\xi,1) &= \frac{2C_F\xi}{\xi - x} \left[ -\frac{9}{2} - \frac{1}{2}\ln^2 2 + \left[ \frac{1}{2}\ln\left(1 - \frac{x}{\xi}\right) - \frac{3}{2}\frac{\xi - x}{\xi + x} \right] \ln\left(1 - \frac{x}{\xi}\right) \right] - (x \leftrightarrow -x) . \\ C_A^{(1)} \text{ known from} & \text{E. Braaten, PRD28, 524 (1983)} \end{split}$$



| Motivation | NNLO CFs | Threshold logarithms | NNLO evolution | Kinematic power corrections | Outlook |
|------------|----------|----------------------|----------------|-----------------------------|---------|
|            |          |                      |                |                             |         |
|            |          |                      |                |                             |         |

#### New: two-loop CFs

• Flavor-nonsinglet calculated using two different techniques

| $C_V^{(2)}$ :   | V.Braun, A.Manashov, S.Moch, J.Schönleber, JHEP <b>09</b> , 117 (2020)<br>J. Schönleber, unpublished |
|-----------------|------------------------------------------------------------------------------------------------------|
| $C_{A}^{(2)}$ : | V.Braun, Manashov, Moch, Schönleber, 2106.01437<br>J.Gao, T.Huber, Y.Ji and Y.M.Wang, 2106.01390     |

#### • Flavor-singlet CFs:

| $C_V^{(2)}$ : | V.Braun, Y. Ji, J. Schönleber, PRL <b>129</b> 172001 (2022) |
|---------------|-------------------------------------------------------------|
| $C_A^{(2)}$ : | Y. Ji, J. Schönleber, e-Print: 2310.05724                   |

• Heavy-quark contrubutions only known to one loop accuracy



#### Example (flavor-nonsinglet)

NNLO CFs

$$C_V^{(2)}(x) = C_F^2 C_P^{(2)}(x) + \frac{C_F}{N_c} C_{NP}^{(2)}(x) + \beta_0 C_F C_{\beta}^{(2)}(x)$$

$$\begin{split} C_{NP}^{(2)} &= 6(1-2\omega) \bigg\{ \mathrm{H}_{20} - \mathrm{H}_3 + \mathrm{H}_{110} - \mathrm{H}_{12} + \zeta_2 \Big( \mathrm{H}_0 + \mathrm{H}_1 \Big) - 3\zeta_3 \bigg\} \\ &+ 12 \Big( \mathrm{H}_{10} - \mathrm{H}_2 - \mathrm{H}_0 - \mathrm{H}_1 + \zeta_2 \Big) + \frac{3}{\omega} \mathrm{H}_0 + \frac{3}{\omega} \mathrm{H}_1 \\ &+ \bigg\{ \frac{1}{\omega} \Big( 12\zeta_3 - \frac{3}{2}\zeta_2^2 - \frac{5}{2}\zeta_2 - \frac{73}{24} \Big) - \frac{3}{\omega} \mathrm{H}_{200} - \Big( \frac{2}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_{30} + \Big( \frac{4}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_4 \\ &- \Big( \frac{2}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_{210} + \Big( \frac{3}{\omega} - \frac{2}{\omega} \Big) \mathrm{H}_{22} - \Big( \frac{2}{\omega} - \frac{1}{\omega} \Big) \mathrm{H}_{31} - \frac{5}{\omega} \mathrm{H}_3 + \frac{5}{\omega} \mathrm{H}_{20} \\ &+ \Big( \frac{1}{\omega} \Big( \zeta_2 - \frac{9}{2} \Big) + \frac{1}{\omega} \Big( \frac{4}{3} - 2\zeta_2 \Big) \Big) \mathrm{H}_{00} - \Big( \frac{2}{\omega} \Big( \zeta_2 - 1 \Big) - \frac{1}{\omega} \Big( \zeta_2 + \frac{7}{6} \Big) \Big) \mathrm{H}_2 \\ &+ \Big( \frac{1}{\omega} \Big( \frac{19}{6} + 5\zeta_2 - 3\zeta_3 \Big) + \frac{1}{\omega} \Big( 7\zeta_3 - \frac{16}{9} \Big) \Big) \mathrm{H}_0 - (\omega \leftrightarrow \bar{\omega}) \bigg\} \end{split}$$

where  $\omega=(1-x)/2,\, ar{\omega}=(1+x)/2$ , and  ${
m H}_{ec{m}}\equiv {
m H}_{ec{m}}(\omega)$  are harmonic polylogarithms



**NNLO CFs** 

#### Numerical estimates: Imaginary part of the Compton form factor $\mathcal{H}$ , t = -0.1 GeV<sup>2</sup>



GK-model, normalized at input scale  $\mu^2=4~{\rm GeV}^2$  to HERAPDF20 (thin lines) and ABMP16 (thick) — the gluon contribution is large and negative, enhanced at NNLO



Sudakov-type double logarithms in the CFs:

$$C_V(x/\xi, a_s) \sim \frac{1}{1-x/\xi} \left[ 1 + a_s C_F \ln^2 \left( 1 - \frac{x}{\xi} \right) + \frac{1}{2} (a_s C_F)^2 \ln^4 \left( 1 - \frac{x}{\xi} \right) + \dots \right]$$

Resummation to the NNLL accuracy

J. Schoenleber, JHEP 02 (2023), 207

$$C_V(x/\xi, a_s) \sim \frac{1}{1 - \frac{x}{\xi}} \exp\left\{\frac{1}{2} \int\limits_{Q^2(1 - \frac{x}{\xi})}^{Q^2} \left[-\Gamma_{\text{cusp}}(\alpha_s(\mu)) \ln \frac{Q^2(1 - \frac{x}{\xi})}{\mu^2} + \gamma_f(\alpha_s(\mu))\right]\right\}$$
$$\times H(\alpha_s(Q)) F(\alpha_s(\sqrt{1 - \frac{x}{\xi}}Q))$$

 $\leftarrow \gamma_f$ , H and F are known to  $\mathcal{O}(\alpha_s^2)$ 



#### **Evolution equations for GPDs**

• Two loops (NLO): singlet + nonsiglet

A. Belitsky, A. Freund, D. Müller, NPB 574, 347 (2000)

- checked by an independent calculation
- evolution code available but can/should be improved
- Three loops much more difficult:
  - Evolution kernels depend on two variables
  - Can be written in terms of HPLs? likely

Conformal symmetry:

- Make use of the NNLO results for anomalous dimensions
- One loop less compared to direct calculation



| Motivation                       | NNLO CFs | Threshold logarithms | NNLO evolution | Kinematic power corrections | Outlook |  |  |  |
|----------------------------------|----------|----------------------|----------------|-----------------------------|---------|--|--|--|
|                                  |          |                      |                |                             |         |  |  |  |
| Evolution organizations for CPDs |          |                      |                |                             |         |  |  |  |

Methods:

Two-loop conformal anomaly

V.B., A.Manashov, S. Moch, M. Strohmaier, JHEP 03 (2016), 142

 $\Rightarrow$  Three-loop evolution equations for flavor-nonsinglet light-ray operators

V.B., A.Manashov, S. Moch, M. Strohmaier, JHEP **06** (2017), 037 Y. Ji, A. Manashov, S. Moch, PRD **108** (2023) 054009

#### Orthogonality of conformal operators

- ⇒ Three-loop mixing matrices for flavor-singlet operators with N ≤ 8
   vector: V.B., K. Chetyrkin, A. Manashov, PLB 834 (2022) 137409
   axial-vector: V.B., K. Chetyrkin, A. Manashov, in preparation
- Numerical impact expected to be moderate because of limited  $Q^2$  range



| Motivation | NNLO CFs                                                    | Threshold logarithms | NNLO evolution | Kinematic power corrections | Outlook |  |  |  |  |  |
|------------|-------------------------------------------------------------|----------------------|----------------|-----------------------------|---------|--|--|--|--|--|
| Kinematic  | Kinematic power corrections $(\sqrt{-t}/Q)^k$ and $(m/Q)^k$ |                      |                |                             |         |  |  |  |  |  |
|            |                                                             |                      |                |                             |         |  |  |  |  |  |

- Ambiguity in the choice of collinear directions makes "leading-twist" calculations ambiguous. In addition, electromagnetic Ward identities are violated.
  - $\bullet$  Repaired by power-suppressed corrections,  $(\sqrt{-t}/Q)^k$  and  $(m/Q)^k$
  - ${f \circ}$  "Kinematic" do not involve new nonperturbative input apart from usual GPDs
  - Factorizable

| • 7 | Twist-four completed | V.B., | Α. | Manashov, | JH | IEP <b>01</b> | (20 | 12), 08 | 5   | ←  | metho  | d      |
|-----|----------------------|-------|----|-----------|----|---------------|-----|---------|-----|----|--------|--------|
|     |                      | V.B., | Α. | Manashov, | D. | Müller,       | В.  | Pirnay, | PRD | 89 | (2014) | 074022 |

• Large effects in certain regions of phase space

| • | The first start in the second second | V.B., Y. Ji, A. Manashov, JHEP 03 (2021), 051        | $\leftarrow$ method |
|---|--------------------------------------|------------------------------------------------------|---------------------|
|   | i wist-six in progress               | V.B., Y. Ji, A. Manashov, JHEP <b>01</b> (2023), 078 | ← scalar targe      |



| Motivation | NNLO CFs | Threshold logarithms | NNLO evolution | Kinematic power corrections | Outl |
|------------|----------|----------------------|----------------|-----------------------------|------|
|            |          |                      |                |                             |      |

#### Large kinematic corrections for the total cross section

#### M. Defurne et al. [Hall A Collaboration] arXiv:1504.05453



GPD model: KM10a (Kumericki, Mueller, Nucl. Phys. B 841 (2010)

ook

s Threshol

Threshold logarithms

NNLO evolution

#### Example: Helicity-flip amplitude to twist-5 accuracy (spin-zero target)

$$\begin{split} \mathcal{A}^{0\pm} &= \frac{|P_{\perp}|}{\sqrt{2}} \frac{4Q}{(qq')} \left\{ D_{\xi}(T_1 \otimes H) & \leftarrow \text{ twist 3} \\ &- \frac{2}{(qq')} \left( \frac{t}{\xi} + |P_{\perp}|^2 D_{\xi} \right) D_{\xi}^2(T_2 \otimes H) + \frac{t}{(qq')} D_{\xi}(T_3 \otimes H) \right\} & \leftarrow \text{ twist 5} \end{split}$$

where

$$D_{\xi} = \xi^2 \partial_{\xi}$$
$$|\xi P_{\perp}|^2 = \frac{1 - \xi^2}{4} (t_{\min} - t) = -\xi^2 m^2 - \frac{1 - \xi^2}{4} t.$$

and

$$\begin{split} T_1(u) &= -\frac{1}{u} \ln(1-u) \,, \\ T_2(u) &= \frac{\text{Li}_2(u) - \text{Li}_2(1)}{1-u} - \ln(1-u) \,, \\ T_3(u) &= \frac{\text{Li}_2(u) - \text{Li}_2(1)}{1-u} - \frac{\ln(1-u)}{2u} \end{split}$$

• Twist-5 corrections are small if expansion parameter changed to  $\frac{2}{Q^2} \mapsto \frac{1}{(qq')} = \frac{1}{Q^2+t}$ 



| Motivation | NNLO CFs | Threshold logarithms | NNLO evolution | Kinematic power corrections | Outlook |
|------------|----------|----------------------|----------------|-----------------------------|---------|
|            |          |                      |                |                             |         |
| Summary    |          |                      |                |                             |         |

#### Towards NNLO accuracy

- Two-loop coefficient functions for DVCS
  - sizeable corrections, completed for light quarks
- Three-loop evolution equations for GPDS
  - flavor nonsiglet in position space, singlet for the first few moments
  - pressing issue: numerical implementation, also in NLO

### **2** Kinematic power corrections $(\sqrt{-t}/Q)^k$ , $(m/Q)^k$

- Twist-four accuracy,  $(\sqrt{-t}/Q)^2$ ,  $(m/Q)^2$ 
  - complete results available, numerical code (B.Pirnay)
  - large effects for parts of phase space and in collider kinematics
  - Coherent DVCS from nuclei: Target mass corrections do not spoil factorization
- Higher powers (work in progress)
  - all-order results on OPE level
  - cancellation of IR divergences checked up to twist-6
  - scalar target completed, nucleon in progress
- Further issues many