

Directions in hadron physics: theory

M. Vanderhaeghen

Genesis of hadron physics

1932-33: measurement of the g-factor of proton

Nobel Prize Physics 1943: Otto Stern

"for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton"

1969: deep-inelastic e-p scattering

Nobel Prize Physics 1990: J.I. Friedman, H.W. Kendall, R.E. Taylor

"for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics"

1955-56: elastic e-p scattering

Nobel Prize Physics 1961: Robert Hofstadter

"for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons"

1974: QCD asymptotic freedom

Nobel Prize Physics 2004: D.J. Gross, H.D. Politzer, F.Wilczek

"for the discovery of asymptotic freedom in the theory of the strong interaction"

50 Years of Quantum Chromodynamics

Franz Gross ^{,1,2}, Eberhard Klempt^{b,3},

Nora Brambilla^{5,12,13}, Peter Braun-Munzinger^{10,14}, Daniel Britzger¹¹, Simon Capstick¹⁵, Tom Cohen¹⁶, Volker Crede¹⁵, Martha Constantinou¹⁷, Christine Davies¹⁸, Luigi Del Debbio¹⁹, chim Denig²⁰, Carleton DeTar²¹, lexandre Deur¹, Yuri Dokshitzer^{22,23}, Hans Günter Dosch¹⁰ Jozef Dudek^{1,2}, Monica Dunford²⁴, Evgeny Epelbaum²⁵, Miguel . Escobedo²⁶, Harald Fritzsch^{d,27}, Kenji Fukushima²⁸, Paolo Gambino^{11,29}, Dag Gillberg^{30,31}, Steven Gottlieb³², Per Grafstrom³³, Massimiliano Grazzini³⁴, Boris Grube¹, lexey Guskov³⁵, Toru Iijima³⁶, Xiangdong Ji¹⁶, Frithjof Karsch³⁷, Stefan Kluth¹¹, John B. Kogut^{38,39}, Frank Krauss⁴⁰, Shunzo Kumano^{41,42}, Derek Leinweber⁴³, Heinrich Leutwyler⁴⁴, Hai-Bo Li⁴⁵, Yang Li⁴⁶, Bogdan Malaescu⁴⁷, Chiara Mariotti⁴⁸, Pieter Maris⁴⁹, Simone Marzani⁵⁰, Wally Melnitchouk¹, Johan Messchendorp⁵¹, Harvey Meyer²⁰, Ryan Edward Mitchell⁵², Chandan Mondal⁵³, Frank Nerling^{51,54,55}, Sebastian Neubert³, Marco Pappagallo⁵⁶, Saori Pastore⁵⁷, José R. Peláez⁵⁸, ndrew Puckett⁵⁹, Jianwei Qiu^{1,2}, Klaus Rabbertz⁶⁰, Iberto Ramos⁶¹, Patrizia Rossi^{1,62}, nar Rustamov^{51,63}, ndreas Schäfer⁶⁴, Stefan Scherer⁶⁵, Matthias Schindler⁶⁶, Steven Schramm⁶⁷, Mikhail Shifman⁶⁸, Edward Shuryak⁶⁹, Torbjörn Sjöstrand⁷⁰, George Sterman⁷¹, Iain W. Stewart⁷², Joachim Stroth^{51,54,55}, James Vary⁴⁹, Javier Virto^{76,77}, Marcel Vos⁷⁸, Christian Weiss¹, Markus Wobisch⁷⁹ Sau Lan Wu⁸⁰, Christopher Young⁸¹, Feng Yuan⁸², Xingbo Zhao⁵³, Xiaorong Zhou⁴⁶

arXiv 2212.11107 [hep-ph]

Quo vadis?

High-energy frontier

talk: Nadolsky QCD precision analysis: Coordinated community strategy to adopt the replicability mindset

Low-energy frontier

Data in the NNPDF4.0

High-energy frontier

talk: Pastore

Low-energy frontier

talks: Gianotti, Denig

High-energy frontier

arXiv:1901.09966

Dark matter could be lighter than previously thought, **MeV - GeV mass range**: ALPs, dark photon, X17, ...

Low-energy frontier

New opportunities: PADME, Belle II, ... MESA, BDX@JLab, ...

High-energy frontier

Precision frontier

Running of $\sin^2 \theta_W$

talks: Denig, Ramsey-Musolf Precision low Q² expt.

-> P2@MESA: 0.16% error -> Controlled hadronic physics corrections -> reaches new physics scale of ~50 TeV !

Precision frontier

talks: Bottalico, Fodor

Low-energy frontier

2π $(g-2)_{\mu}$: history of achieved accuracy JULIAN SCHWINGER 2-12-1918 - 7-16-1994 CLARICE CARROL SCHWINGER 9-23-1917 - 1-9-2011 $\frac{\alpha}{2\pi}$ 1960, Nevis $\left(\frac{\alpha}{\pi}\right)^2$ 1962, CERN I $\left(\frac{\alpha}{\pi}\right)^3$ 1968, CERN II $\left(\frac{\alpha}{-1}\right)^3$ + Hadronic **1979, CERN III** $\left(\frac{\alpha}{z}\right)^5$ + Hadronic + Weak 2004, BNL Accuracy **Fermilab** 2023 10^{-10} 10⁻⁹ 10⁻⁸ 10^{-7} 10⁻⁶ 10⁻⁵ 10^{-4} QED x 10-11 116584718.931 ± 0.104 fully perturbative $(g-2)_{\mu}$ theory EW 153.6 ± 1.0 1-loop + 2-loopinitiative perturbative + (small) non-pert. Phys.Rept.887 Hadronic vacuum polarization (HVP) (2020) 6845 ± 40 $\left(\frac{\alpha}{\pi}\right)^2 + \left(\frac{\alpha}{\pi}\right)^3 + \left(\frac{\alpha}{\pi}\right)^4$ Had Hadronic Light-by-Light (HLbL) Hadronic Light-by-Light (HLbL) fullv non-perturbative 92 ± 18 $\left(\frac{\alpha}{\pi}\right)^3$

Low-energy frontier

Proton size and electromagnetic structure

Proton radius puzzle

 $R_E = 0.8775 \pm 0.0051 \, \text{fm}$

ep data:

CODATA (2014)

The New York Times

Proton charge radius: present experimental status

from recent compilation Rev. Mod. Phys. 94 (2022) 015002 H. Gao, M. Vdh

- 3 out of 6 new results are fully consistent with muonic hydrogen result
- inconsistency between Fleurbaey et al. (Paris) and Grinin et al. (Garching) results for 1S-3S H : Grinin et al.: factor 2 more precise, ~ 2σ smaller than Fleurbaey et al., ~ 2σ larger than μ H result
- Brandt et al. (Colorado) result is $\sim 3\sigma$ larger than CODATA 2018 / muonic atom spect.

vigorous ongoing program in electron/muon scattering

Lamb shift: status of theory

μH Lamb shift: summary of corrections

For H: present accuracy comparable with experimental precision δ_{exp} (ΔE_{LS}) = 2.3 μeV

Muonic atom spectroscopy needs nucleon/nuclear input

2S-2P

Lamb Shift:

	$\Delta E_{TPE} \pm \delta_{theo} \ (\Delta E_{TPE})$	Ref.	$\delta_{exp}(\Delta_{LS})$	Ref.
$\mu { m H}$	$33 \ \mu \mathrm{eV} \pm 2 \ \mu \mathrm{eV}$	Antognini et al. (2013)	$2.3 \ \mu \mathrm{eV}$	Antognini et al. (2013)
$\mu \mathrm{D}$	$1710~\mu \mathrm{eV} \pm \frac{15~\mu \mathrm{eV}}{15}$	Krauth et al. (2015)	$3.4 \ \mu \mathrm{eV}$	Pohl et al. (2016)
$\mu^3 \text{He}^+$	$15.30 \mathrm{~meV} \pm 0.52 \mathrm{~meV}$	Franke et al. (2017)	$0.05 \mathrm{meV}$	
$\mu^4 \mathrm{He^+}$	$9.34 \text{ meV} \pm \frac{0.25 \text{ meV}}{-0.15 \text{ meV} \pm 0.15 \text{ meV}}$	Diepold et al. (2018) Pachucki et al. (2018)	$0.05 \mathrm{meV}$	Krauth et al. (2020)

μΗ:

THEORY

present accuracy comparable with experimental precision Future: factor 5 improvement on Lamb shift planned @PSI

EXPERIMENT

CREMA, FAMU, J-PARC: 1S hyperfine splitting in μ **H to 1ppm**

μ**D, μ³He+, μ**4He+:

present accuracy factor 5-10 worse than experimental precision

Imaging of partons in hadrons

Quark transverse charge densities in nucleon in IMF

transverse c.m. can be fixed in a light-front frame

longitudinally polarized nucleon

$$\begin{split} \rho_0^N(\vec{b}) &\equiv \int \frac{d^2 \vec{q}_\perp}{(2\pi)^2} \, e^{-i\vec{q}_\perp \cdot \vec{b}} \, \frac{1}{2P^+} \langle P^+, \frac{\vec{q}_\perp}{2}, \lambda | J^+(0) | P^+, -\frac{\vec{q}_\perp}{2}, \lambda | J^+(0) | P^+, -\frac{\vec{q}_\perp}{2},$$

Soper (1997)

Burkardt (2000)

Miller (2007)

transversely polarized nucleon

$$\rho_T^N(\vec{b}) \equiv \int \frac{d^2 \vec{q}_\perp}{(2\pi)^2} e^{-i\vec{q}_\perp \cdot \vec{b}} \frac{1}{2P^+} \langle P^+, \frac{\vec{q}_\perp}{2}, s_\perp = +\frac{1}{2} |J^+(0)| P^+, -\frac{\vec{q}_\perp}{2}, s_\perp = +\frac{1}{2} |J^$$

dipole field pattern

Carlson, Vdh (2007)

Spatial imaging of hadrons

Tiator, Vdh(2007)

Miller(2007)

Carlson, Vdh(2007)

$N \rightarrow N(1440)1/2^+$ transition densities

Nature of 1st radial excitation of nucleon:

consistent with u-quark core screened by mesonic tail

$N \rightarrow N^*$, Δ^* transition form factors / densities

**

N(2060)5/2-

Structure vs dynamics: Quark spatial vs momentum distributions 🤊 💡

MRI studies brain <u>anatomy</u>.

<u>Functional</u> MRI (fMRI) studies brain <u>function</u>.

Correlations in transverse position/longitudinal momentum

Broader picture of nucleon structure: Generalized Transverse Momentum Distributions

Nucleon momentum and angular momentum

$$\int_{-1}^{+1} dxx \left\{ \mathbf{H}^{q}(x,\xi,0) + \mathbf{E}^{q}(x,\xi,0) \right\} = A(0) + B(0) = 2\mathbf{J}^{q}$$

lattice QCD calculations at the physical point (MS at 2 GeV)

Sharing of momentum and total angular momentum between quarks and gluons nearly identical in proton ! approximately for each parton separately

$$\boxed{B_{q,g}(0)\approx 0}$$

Nucleon quasi/pseudo-PDFs/GPDs from lattice QCD

Future calculations have the potential to transform the field of GPDs

$N \rightarrow \Delta(1232) DVCS / DVMP and GPDs$

8 helicity conserving and 8 helicity flip $N \rightarrow \Delta GPDs(x, \xi, t)$

Recent works: Kroll, Passek-Kumerički (2023); Semenov-Tian-Shansky, Vdh (2023) large N_c relations to N GPDs Frankfurt, Polyakov, Strikman, Vdh (2000)

$e^{-}p \rightarrow e^{-}\gamma N^* \rightarrow e^{-}\gamma \pi^+ n$: cross section and BSA

28

$e^-p \rightarrow e^-\gamma N^* \rightarrow e^-\gamma \pi^+ n$: cross section and BSA

29

Double DVCS allows direct access to GPDs

$$\mathcal{F}(\boldsymbol{\xi}',\boldsymbol{\xi},t) = \mathcal{P}\int_{-1}^{1} dx \, F_{+}(x,\boldsymbol{\xi},t) \left[\frac{1}{x-\boldsymbol{\xi}'} \pm \frac{1}{x+\boldsymbol{\xi}'}\right] - \mathrm{i}\pi F_{+}(\boldsymbol{\xi}',\boldsymbol{\xi},t)$$

CLAS12 lumi upgrade SoLID

Guidal, Vdh(2003); Belitsky, Mueller (2003) new works: DDVCS: Deja et al.(2003) $\gamma p \rightarrow \gamma \gamma p$ at large $M_{\gamma\gamma}$ Grocholski et al.(2021, 2022)

Proton gluonic radius

Nucleon Energy-Momentum Tensor (EMT)

 $\langle P|T^{\mu\nu}|P\rangle = 2P^{\mu}P^{\nu}$

$$2M^2 = \langle P|\frac{\tilde{\beta}(g)}{2g}G^a_{\alpha\beta}G^{a\alpha\beta}|P\rangle + \langle P|\sum_{l=u,d,s}m_l(1+\gamma_{m_l})\bar{q}_l\bar{q}_l|P\rangle$$

In chiral limit all of hadron mass is due to the trace anomaly Quark contributions to hadron mass: sigma-terms

Gluonic contribution

~ 10% (u, d, s) Lattice QCD

Matrix element of full nucleon EMT: parametrised by 3 form factors (FFs)

$$\begin{split} \langle P + \frac{q}{2} \, | \, \mathbf{T}^{\mu\nu}(0) \, | \, P - \frac{q}{2} \rangle &= \bar{u}(P + \frac{q}{2}) \left\{ \mathbf{A}(Q^2) \, \gamma^{(\mu}P^{\nu)} + \mathbf{B}(Q^2) \, P^{(\mu}i\sigma^{\nu)\alpha} \frac{q_{\alpha}}{2M} + C(Q^2) \left(q^{\mu}q^{\nu} - q^2g^{\mu\nu} \right) \frac{1}{M} \right\} u(P - \frac{q}{2}) \end{split} \tag{Pagels}$$

$$(1966)$$

- A -> momentum distribution
- A + B -> angular momentum distribution
- **C** -> pressure distribution

Threshold J/ ψ photo-production

JLab/Hall C data

Talks: Meziani, Joosten, Pefkou

Analyzed in different approaches

Holographic QCD model (M-Z) Mamo, Zahed (2021)

GPD model **(G-J-L)** Guo, Ji, Liu (2021)

Lattice QCD Pefkou, Hackett, Shanahan (2022)

- to reliably interpret slope as a scalar gluonic radius: estimate of C_g (lattice)
- checks with heavier quarkonia:
 JLab energy upgrade -> ψ(2S)
 EIC -> Υ
 - Electroproduction: new scale

Outlook

QCD is 50 years, but hadron imaging at the femtoscale just started

 Interactions with precision and high-energy frontiers enrich field

Close synergy theory <-> experiment will move field forward

> For deeper still, the story lies, Where quarks unite, a grand surprise, Their energies entwined in space, A dance of colors, an embrace. courtesy: Zein-Eddine Meziani

