Mu2e: A Search for Charged Lepton Flavour Violation in Muons

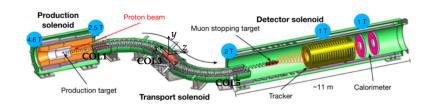
Developing a data driven method for antiproton background measurement

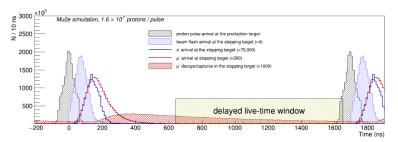
Namitha Chithirasreemadam

Supervisor : Prof. Simone Donati

Interim Review Meeting INTENSE

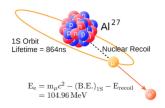
Contact : namitha@pi.infn.it 23 Nov 2022





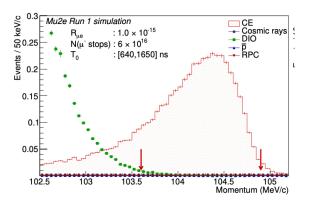
Mu2e

- The Mu2e experiment at Fermilab will search for the neutrinoless $\mu^- \to e^-$ conversion in the field of an aluminum nucleus.
- The expected Run I 5 σ discovery sensitivity is $R_{\mu e}$ = 1.2 × 10⁻¹⁵, with a total expected background of 0.11 ± 0.03 events.
- In the absence of a signal, the expected upper limit is $R_{\mu e}$ < 6.2 × 10⁻¹⁶ at 90% CL.
- An 8 GeV pulsed proton beam is extracted from the Fermilab Delivery Ring.
- The beam interacts with the tungsten production target in the production solenoid (PS), producing mostly pions.
- Particles produced backwards travel through the S-shaped superconducting transport solenoid (TS) towards the superconducting detector solenoid (DS).
- Muons are mainly produced in $\pi^- \to \mu^- \nu$ decays.
- Muons stopped in the Stopping Target (ST) rapidly cascade to a 1s orbit in the AI atoms and could undergo the process of μ⁻ → e⁻ conversion.



Mu2e Schematic Setup

Proton pulses arrive at the production solenoid 1695 ns apart.


A delayed live-time window suppresses the beam-related background.

Main Background processes

- Cosmic Rays : A typical cosmic background event consists of a reconstructed downstream propagating e^- and a CRV stub.
- Muon Decays In Orbit : μ^- stopped in the ST form muonic atoms. The energy spectrum of electrons from decays of bound muons extends up to E_{CF} .
- Radiative Pion Capture : π^- stop within the ST and undergo $\pi^- + N(A,Z) \to \gamma^* + N(A,Z-1)$, followed by $\gamma \to e^-e^+$ producing e^- with an energy spectrum extending above 130 MeV.
- Radiative Muon Capture : $\mu^- + N(A,Z) \rightarrow \gamma^* + \nu_\mu + N(A,Z-1)$
- Antiprotons : \bar{p} can pass through TS, enter DS, and annihilate in the ST producing signal-like e^- .

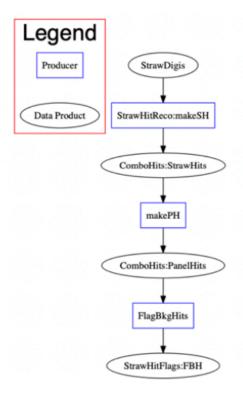
 \bar{p} are significantly slower than the other beam particles. The only way to suppress \bar{p} background is to use additional absorber elements, at the entrance and centre of the TS.

Electron momentum distribution. The CE signal distributions correspond to Rµe = $1 \times 10-15$

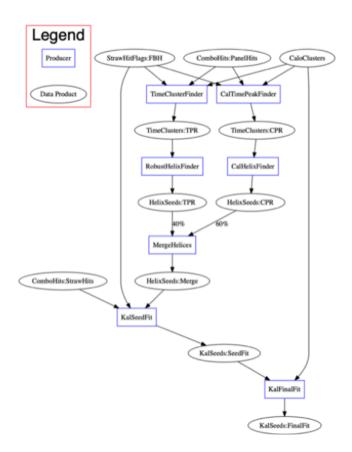
The background estimate numbers are the integrals over the optimized signal window, 103.60 and <math>640 < T0 < 1650 ns. The error bars represent statistical uncertainties only.

<u> </u>	
Total relative uncertainty	Dominant contribution
4%	Momentum scale
100%	\bar{p} production cross section
20%	Cosmic flux normalization
59%	Momentum scale
29%	Pion production cross section
10%	Flux measurement
	4% 100% 20% 59% 29%

Systematic uncertainties used in the sensitivity optimization procedure.


Motivation to study the \bar{p} background

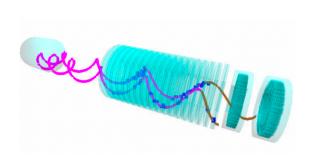
- $p\bar{p}$ annihilation at rest in the ST can produce events with more than one track with p~100 MeV/c , and we want to utilize this unique feature.
- At present, we do not have a good way to constrain \bar{p} background from data.
- Our idea is to identify and potentially reconstruct these two particle final state events and estimate the antiproton background by comparison.
- For the " $p\bar{p}$ annihilation in the ST" events, we estimated $\frac{N_{e^-perMeV}}{N_{>=2particle}}\sim \frac{1}{500}.$
- From SU2020, the estimated antiproton background for Run 1 is $0.01 \pm 0.003(stat) \pm 0.010(syst)$, where the systematic error is dominated by the uncertainty on the production cross section.
- Successful identification and reconstruction of the two and more particle final state events could help to constrain the antiproton background.


Channel	Mu2e Run I
SES	2.4×10^{-16}
Cosmic rays DIO	$0.046 \pm 0.010 \text{ (stat)} \pm 0.009 \text{ (syst)}$ $0.038 \pm 0.002 \text{ (stat)} \stackrel{+0.025}{-0.015} \text{ (syst)}$
Antiprotons	$0.010 \pm 0.003 \text{ (stat) } \pm 0.010 \text{ (syst)}$
RPC in-time RPC out-of-time ($\zeta = 10^{-10}$)	$0.010 \pm 0.002 \text{ (stat)} ^{+0.001}_{-0.003} \text{ (syst)} (1.2 \pm 0.1 \text{ (stat)} ^{+0.1}_{-0.3} \text{ (syst)}) \times 10^{-3}$
RMC	$< 2.4 \times 10^{-3}$
Decays in flight	$< 2 \times 10^{-3}$
Beam electrons	$< 1 \times 10^{-3}$
Total	0.105 ± 0.032

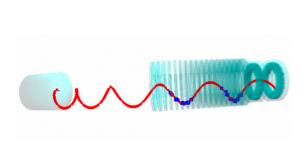
Background summary and SES using the optimized signal momentum and time window, $103.60 and <math>640 < T_0 < 1650 \text{ ns}$

Offline Reconstruction Workflow

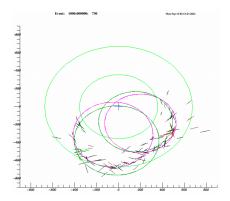
Straw hit reconstruction

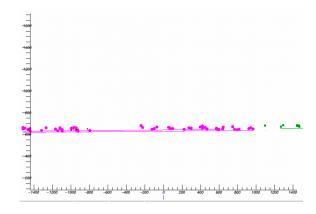


Downstream track reconstruction

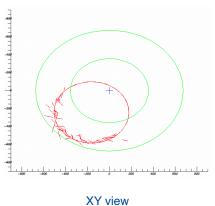

Motivation to develop tools for identification and reconstruction of events with >= 2 particle tracks

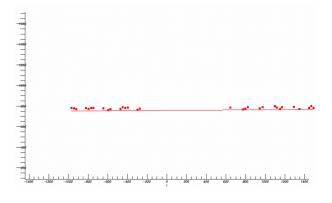
- The present Offline reconstruction algorithm is designed to identify single final particle events and tuned particularly for efficient conversion electron event reconstruction:
 - The present TimeClusterFinder settings could remove hits which do not look like CE hits.
 - TrkPatRec takes an input time cluster and forms a helix. In the case of two particle final state events from $p\bar{p}$ annihilation, the tracks would fall within the same time window.
 - CalPatRec could identify two helices if each helix has a calo cluster associated to it but this may not be the case for most of the events.

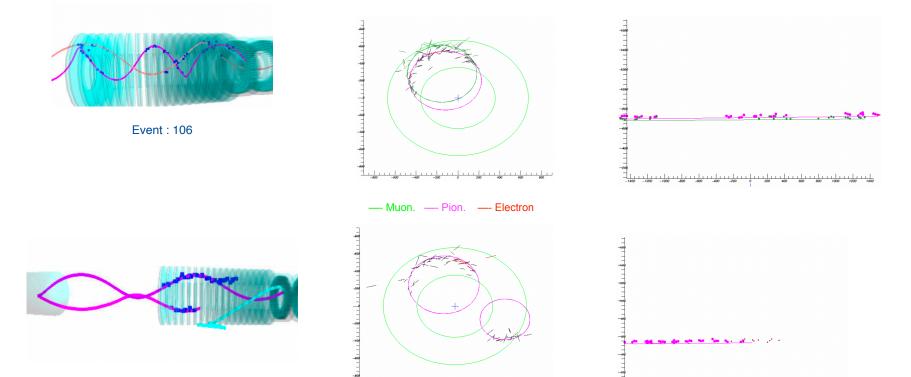

Some interesting events



Event: 730



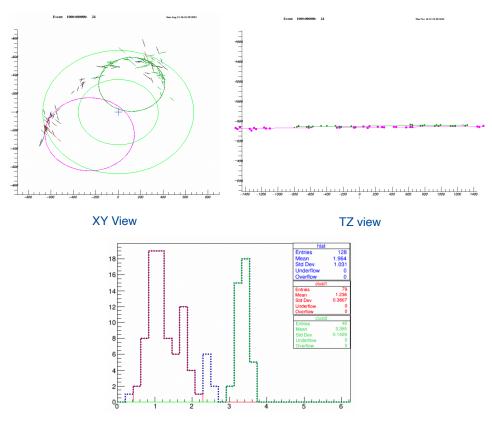

Event: 11



TZ view

Aim: Reconstruct events with two helices corresponding to two particles produced at the same time and understanding the efficiency of reconstruction which may tell us whether this approach is feasible.

T7 view

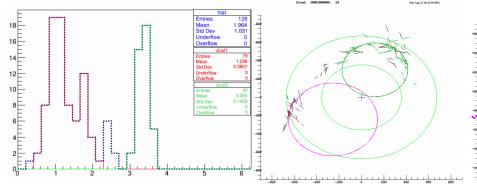

XY view

Step 1: From the visual inspection of the events, we decided to start with the simple cases where two distinct groups of hits separated in ϕ could be identified.

Event: 148

ϕ cluster finder algorithm

- Input: Combo hits (or Time Clusters)
- Loop through the hits, fill ϕ histogram.
- Find peak bin and go through the bins around it with content > threshold.
- This gives ϕ_{min} and ϕ_{max} for a cluster.
- Repeat the above procedure for the rest of the hits.
- Form time clusters (algorithm) borrowed from the present Offline TimeClusterFinder) from the hits of a ϕ cluster.
- If the time cluster has > 10 straw hits, add it to the event.

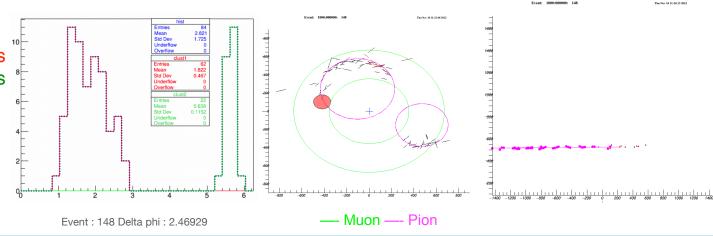

ϕ clusters

• Event 24

Cluster 1:79 straw hits

Cluster 2:40 straw hits

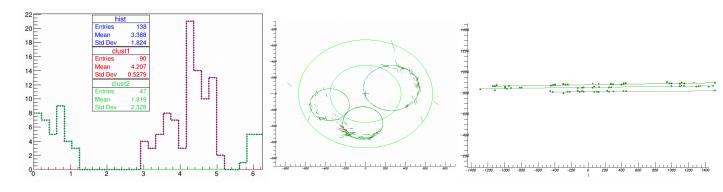
 $\Delta \phi$: 2.12


Event: 24 Delta phi: 2.11854

Cluster 1:62 straw hits

Cluster 2: 22 straw hits

 $\Delta \phi$: 2.47



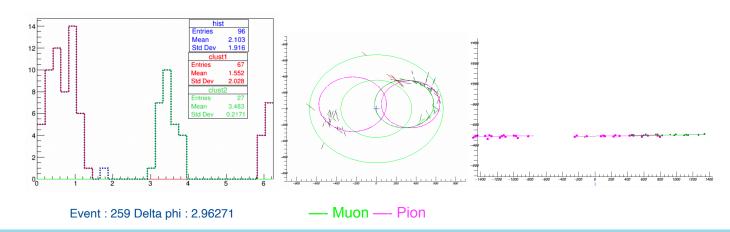
ϕ clusters

Event 258

Cluster 1:90 straw hits Cluster 2: 47 straw hits

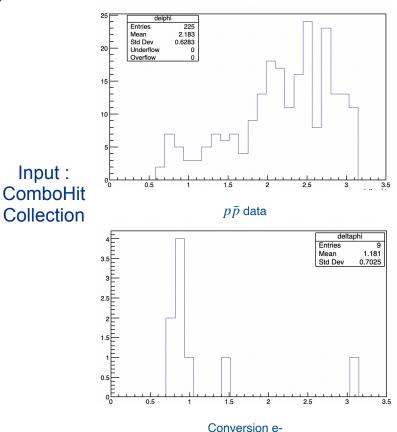
 $\Delta \phi$: 2.43

Event: 258 Delta phi: 2.42506

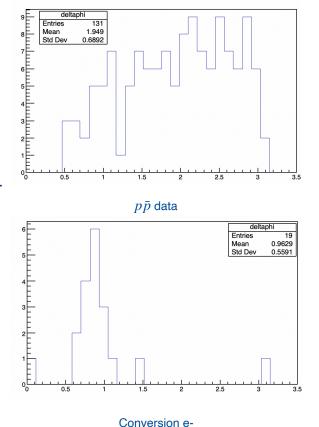


Cluster 1:67 straw hits

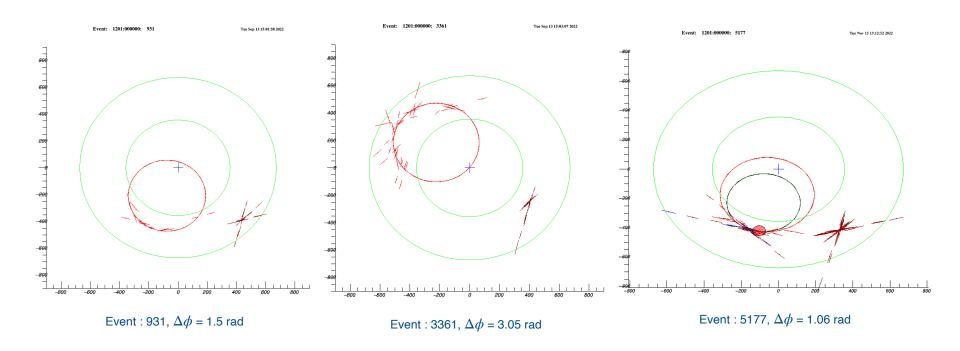
Cluster 2:27 straw hits


 $\Delta \phi$: 2.6

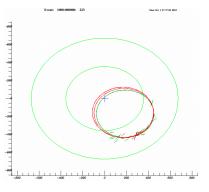
11

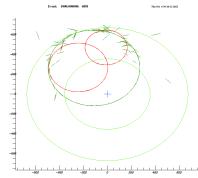


$\Delta\phi$ comparison between $p\bar{p}$ and conversion e^- events


• $\Delta\phi$ distribution is filled with events where two time clusters are found with each time cluster having > 10 straw hits

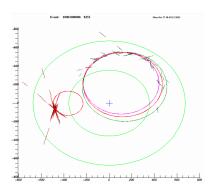
Input: TimeCluster Collection

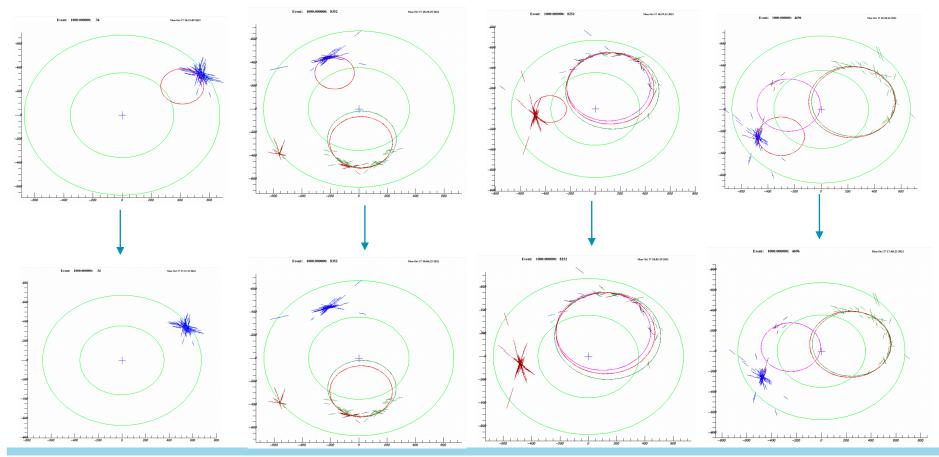

Conversion e^- events with $\Delta \phi \geq$ 1 rad



Note : The compton e+/e- forms the second ϕ cluster. But they are not saved.

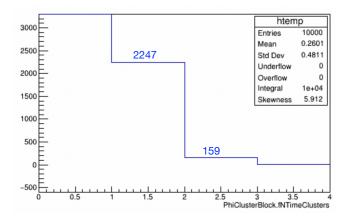
Some cuts/enhancements

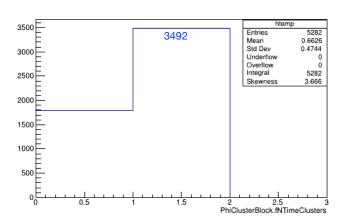

- Issue 1: 1 cluster found by the PhiClusterFinder but 2 helices. Issue at the MergeHelices nOverlap criteria as no. of overlapping hits < 10.
- Solution : Changed the criteria from " if nOverlap > 10 AND overlap fraction > 0.5 " to just " if overlap fraction > 0.5 " then compare the helix candidates.
- Issue 2 : Two clusters found with $\Delta \phi < 1.5$ are mostly events with a single off-axis produced particle with large radius.
- Solution : $\Delta \phi$ cut at 1.5 rad.
- Issue 3 : Two clusters found with $\Delta \phi > 1.5$ but one of the clusters is formed by a delta e-/+.
- Solution: When a cluster has > min straw hits (40) check the sigma of its ϕ distribution. If sigma < min. limit (0.1) it is vetoed as a compton e-/e+.


Example of Issue 1

Example of Issue 2

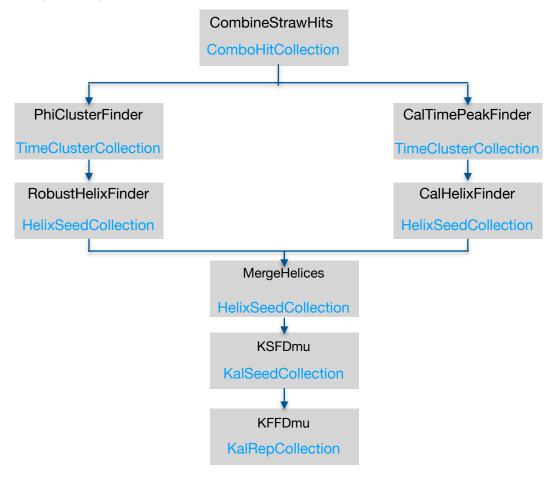
Example of Issue 3


The compton electron issue is resolved

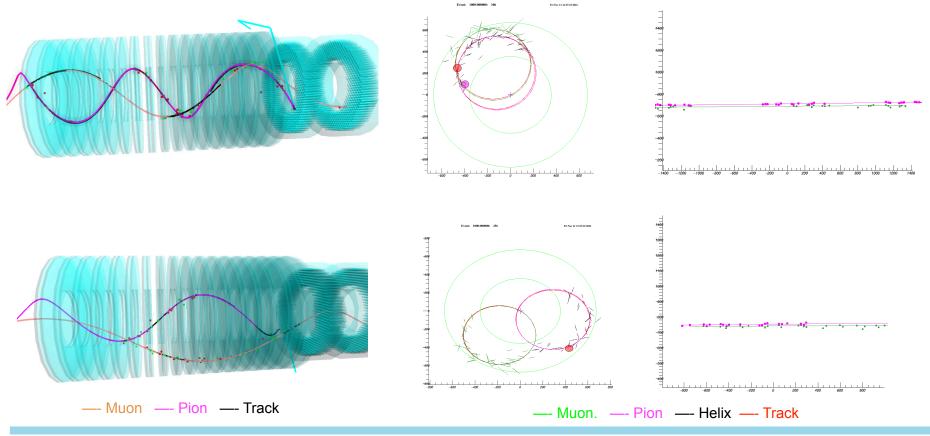

Time cluster(s) per event

• After a $\Delta \phi > 1.5$ cut, we obtain 159 events with two clusters in each event.

- With the ϕ cluster finder,
 - 1. For $p\bar{p}$ events : 159 events with two clusters
 - 2. For CE events : 3492 events with single cluster

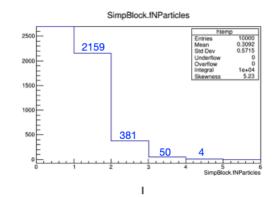


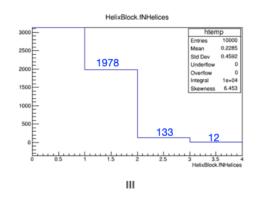
 $p\bar{p}$ data

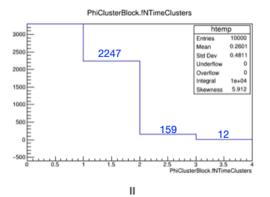


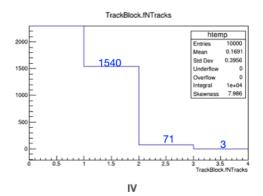
Conversion e-

Reconstruction workflow

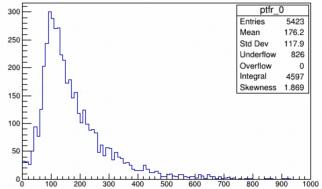


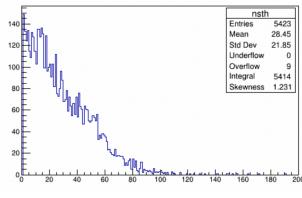

Some events with two reconstructed tracks

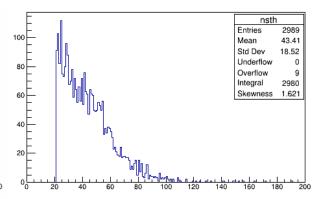



Sim Particles -> Time Clusters -> Helices -> Tracks

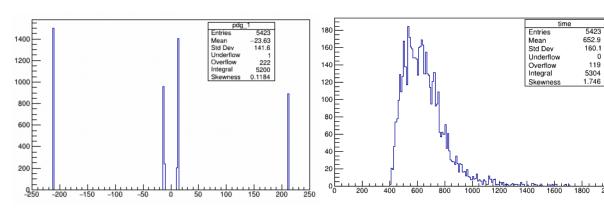
- 381 events with two sim particles with > 20 straw hits associated to each particle.
- 159 events with two time clusters.
- About 67% of these events are correctly identified 2 particle track events.
- 133 events with two helices.
- 71 events with two tracks.
- 90% of these two track events are events with two sim particles.
- Overall, about 19% of the two sim particle events are correctly identified and reconstructed.







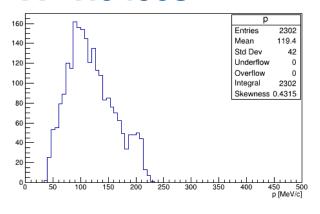
SimParticles

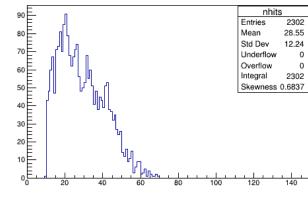


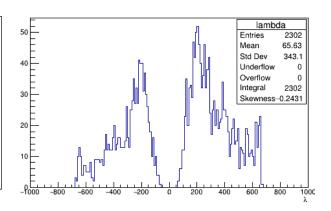
N straw hits

Momentum(MeV/c) at VD 13

- 2150 events with 1 sim particle having > 20 straw hits
- 364 events with 2 sim particles each having > 20 straw hits
- 50 events with 3 sim particles.

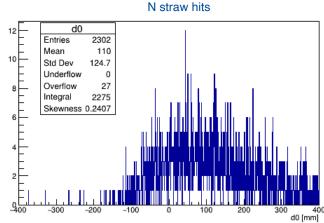


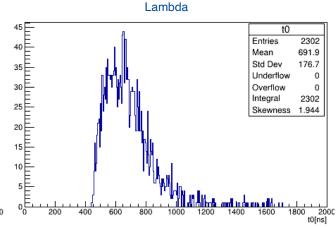



PDG code

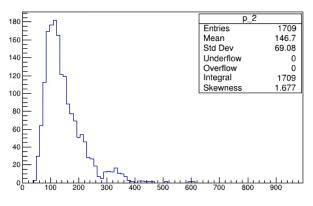
Time (ns)

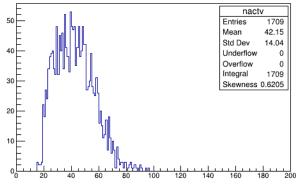
All Helices

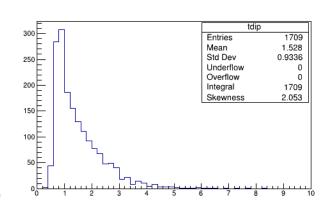




Total momentum (MeV/c)

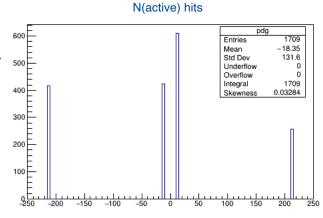

- 1978 events with 1 helix
- 133 events with 2 helices
- 50 events with 3 sim particles.

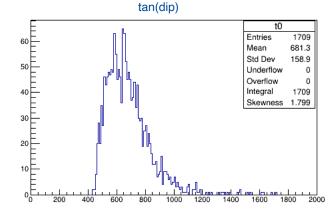




D₀

All reconstructed tracks





Total momentum (MeV/c)

- 1540 events with 1 track.
- 71 events with 2 tracks.

PDG code

Trk T0

Conclusion

- With the PhiClusterFinder we can identify particle trajectories which are simultaneous in time but separated in ф.
- In the study of the $p\bar{p}$ events,
 - -> In 10^4 generated events, about 3.7 % of the events contained 2 particle tracks with > 20 straw hits per particle and about **0.15%** of the events contain single **electron tracks** with > 20 straw hits and momentum in the range of 90-110 MeV/c.
 - -> With a $\Delta \phi > 1.5$ cut, 159 events with two clusters are selected.
 - -> After complete reconstruction, we found 71 events with 2 tracks. 90% of these events are events with two sim particles.
 - -> So, about 19% of the two sim particle events are correctly identified.
- At present, $\frac{N_{>=2particle}}{N_{e^-perMeV}} \sim \frac{71*(110-90)}{15} \sim 10^2$. The expected background is small $\sim 10^{-2}$, so the expectation is that we will end up with an upper bound on the $p\bar{p}$ background.

Next Steps

- We continue to investigate the efficiency of the standard triggers for $p\bar{p}$ events. If the efficiency of one-track trigger turns out to be high enough, that would be ideal.
- If the efficiency turns out to be insufficient, we may have to think about a two-helix trigger (so far, this is the only proposal)
- Generate $p\bar{p}$ data mixed with background and test the PhiClusterFinder.

Conferences/Workshops

- 54 th Annual Fermilab Users Meeting, Poster "Mu2e Event Display Development using the TEve Framework", held online (Fermilab, August 2-6, 2021)
- New Perspectives 2021 Conference, Talk "Mu2e Event Display Development using the TEve Framework", held online (Fermilab. August 16-19, 2021)
- Congresso Nazionale della Società Italiana di Fisica, Talk, held online (September 13-17, 2021)
- American Physical Society April Meeting 2022, Talk, held online (April 9-12, 2022)
- 15 th Pisa Meeting on Advanced Frontier Detectors Edition 2022, Poster "Mu2e Event Visualization Development", (La Biodola, Isola d'Elba, Italy, May 22-28, 2022)
- 55th Annual Fermilab Users Meeting, Poster "Mu2e Event Visualization Development" (Fermilab, June 13-19, 2022): Won the **Best Poster Presentation**
- New Perspectives 2022. Talk "Mu2e Event Visualization Development using REve" (Fermilab. June 17, 2022).
- 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Poster (Bari, 23–28 Oct 2022)
- Mu2e Collaboration Meeting (Fermilab, 12- 19 Nov 2022)

Courses completed

- Statistical Analysis Lab
- Introduction to Astrophysics
- Scientific Writing for Physicists
- Seminar on "Plasma Wakefield Accelerators"

Back up Slides

Time clustering from the found ϕ clusters

- Calculate the time of each combo hit of a ϕ cluster and fill the time spectrum (no. of bin entries = no. of straw hits forming the combo hit)
- Find the T0 of this spectrum.
- Assign/push back the combo hits to the time cluster if they belong to the time/phi spectrum after checking that the combo hit time - T0 < maxdT.
- Create the time cluster with these combo hits and calculate the T0 as the weighted median of the sum combo hit time where the weight on each combo hit time is the no. of straw hits.

```
PhiCluster : { module type : PhiClusterFinder
 ComboHitCollection
 #TimeClusterCollection : "TimeClusterFinderDmu"
 DiagLevel
 DebugLevel
 MinNStrawHits
                         : 10
                         : 10
 MinCount
 Threshold
                         : 2 # 4
 Phimin
 Phimax
                         : 6.238
 Phibin
                         : 0.207
                         : 1.5
 DeltaPhimin
 Tmin
                         : 0.0
                         : 100000.0
 Tmax
                         : 15.0
 Tbin
 AveragePitch
                         : 0.6
 Ymin
                         : 5.0
 PeakWidth
                         : 100
 MaxdT
                         : 150
 MinSigma
                         : 0.1
 T0Calculator
                         : {}
```

Issues with the time cluster as input

- 2 time clusters were found in some events with repeated hits.
- Some hits were left out due to $\Delta \phi$ < 1.5 and peak width = 1 conditions

```
imeClusterFinder : {
module_type
                       : TimeClusterFinder
ComboHitCollection
StrawHitFlagCollection: "FlagBkgHits:ComboHits"
CaloClusterCollection : "CaloClusterMaker"
ClusterMVA
                       : { MVAWeights : "Offline/TrkPatRec/data/TimeCluster.weights.xml" }
ClusterCaloMVA
                       : { MVAWeights : "Offline/TrkPatRec/data/TimeClusterCalo.weights.xml"
HitSelectionBits
                       : ["EnergySelection", "TimeSelection", "RadiusSelection"]
HitBackgroundBits
                       : @local::PatRecBackground
UseCaloCluster: true
UseCaloClusterPosition: true
CaloClusterWeight
                       : 10.0
TestFlag
                       : true
CaloClusterMinE
                       : 50.0
CaloClusterWeight
                       : 10.0
T0Calculator
DtMax
                       : 25
MinNHits
                       : 10
MinKeepHitMVA
                       : 0.2
MinAddHitMVA
                       : 0.2
MaxdPhi
                       : 0.0
Tmax
                       : 100000.0
Tbin
                       : 15.0
AveragePitch
                       : 0.6
                       : 5.0
RefineClusters
                       : true
PrefilterCluster
                       : true
RecoverHits
                       : true
PeakWidth
```

- Now we find single time clusters with most of the combo hits.
- But in some events we still observe the loss of combo hits (examples in the next slide)

```
Solution
```

```
physics.producers.TimeClusterFinderDmu :
    ComboHitCollection
                            : "makePH"
   UseCaloCluster
                           : false
   TestFlag
                           : false
   MinNHits
                           : 10
   MinKeepHitMVA
                            : -1.0
   MinAddHitMVA
                           : -1.0
   MaxdPhi
                           : 100.0
    PeakWidth
                            : 100
```

Changes made to the TimeClusterFinder settings

Examples of events where the effect of the loss of hits is observed

Event: 148

Input straw hits = 84

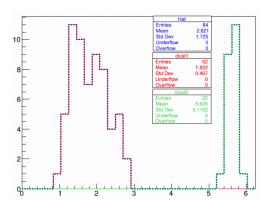
2 output ϕ clusters with 62 and 22 hits

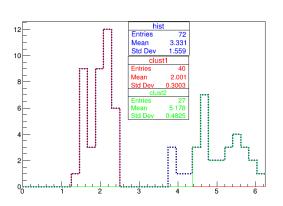
 $\Delta \phi$ = 2.47

Input time cluster straw hits = 76

2 output ϕ clusters with 61 and 15 hits

Event: 1385

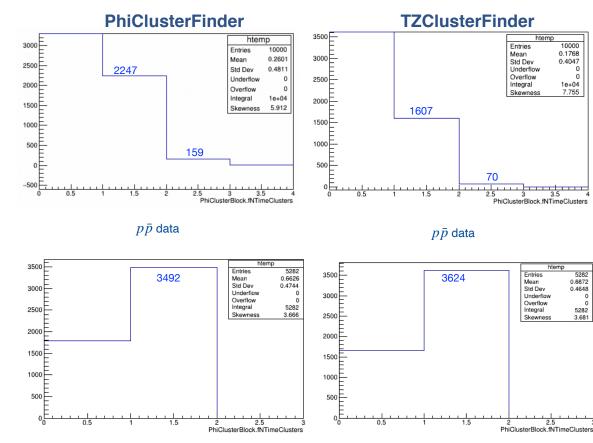

Input straw hits = 72


2 output ϕ clusters with 40 and 27 hits

 $\Delta \phi$ = 3.11

Input time cluster straw hits = 62

2 output ϕ clusters with 42 and 19 hits

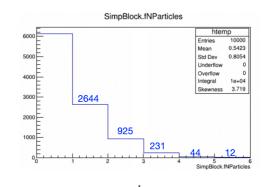


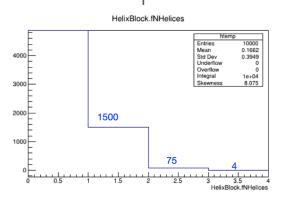
So, for this study we need a physics-neutral time clustering.

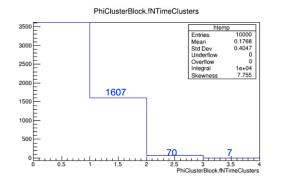
```
physics : {
   producers : { @table::Reconstruction.producers
       PhiCluster : { @table::PhiCluster
         # TimeClusterCollection : "TimeClusterFinderDmu"
       MHFinderDmu : { @table::TrkReco.producers.MergeHelices
           HelixFinders: [ "MHDmuM", "MHDmuP" ]
       KSFDmu : { @table::KSFDmuM
           SeedCollection: "MHFinderDmu"
           CheckHelicity : false
       KFFDmu : { @table::KFFDmuM
           SeedCollection: "KSFDmu"
```

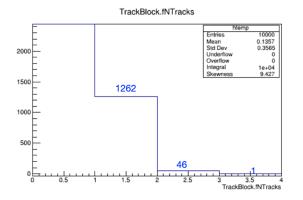
No. of Time cluster(s) per event

- With ϕ cluster finder,
 - 1. For $p\bar{p}$ events : 159 events with two clusters
 - 2. For CE events: 3492 events with single cluster
- With TZ cluster finder,
 - 1. For $p\bar{p}$ events : 70 events with two clusters
 - 2. For CE events: 3624 events with single cluster

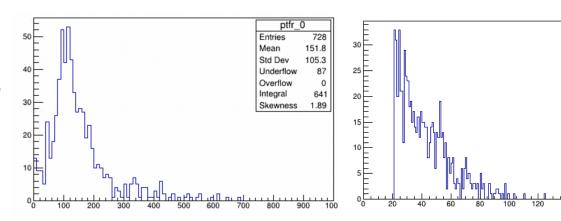



Conversion e-


Conversion e-


Sim Particles -> Time Clusters -> Helices -> Tracks (with TZClusterFinder)

- 364 events with two sim particles with > 20 straw hits associated to each particle.
- 70 events with two time clusters.
- 75 events with two helices.
- 46 events with two tracks.



SimParticles

364 events with 2 SimParticles with each particle having > 20 straw hits.

nsth

728

42.47

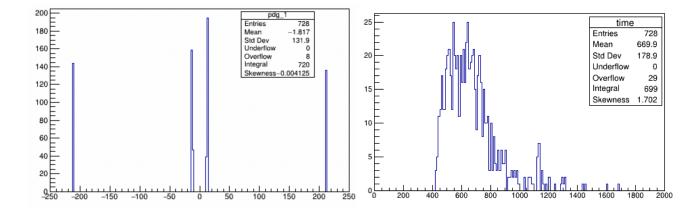
20.49

724

2.34

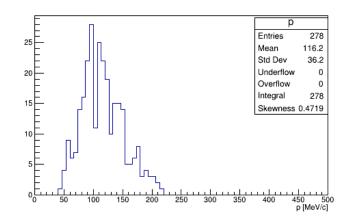
Entries

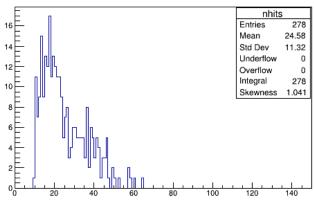
Mean


Std Dev

Underflow

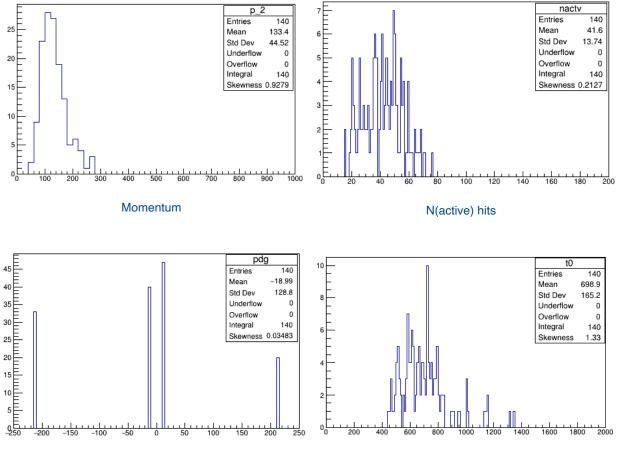
Skewness

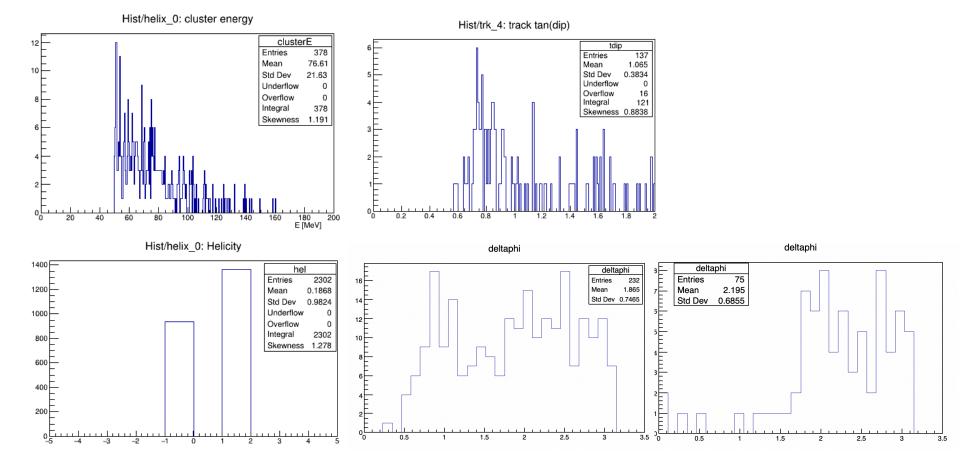

Overflow


Integral

33

2 helices per event




Hist/helix 2: Chi2(XY)/DOF Hist/helix 2: Chi2(ZPhi)/DOF t0 chi2xy chi2zphi Entries 278 Entries 268 268 Entries 1.069 Mean 718.4 Mean 1.279 Std Dev Std Dev 0.922 189.1 Std Dev 1.342 Underflow Underflow 0 Underflow Overflow Overflow Overflow Integral 267 Integral 278 267 Integral Skewness 4,472 Skewness 1.298 Skewness 2.926 800 600 1000 1200 1600

34

Some relevant distributions of two track per event cases

- 70 events with two reconstructed tracks per event
- Most of the tracks are in the high momentum range.
- The tracks are mostly muon and pion tracks, as expected.
- Track T0 is good too?

