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MuZ2e. Production (4.5 — 2.5T)
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Sensitivity of 8x10-17 requires 10'° muons/s to interact with the aluminium (stopping) target.

Muons ( < 75 MeV/c) are captured by the aluminium and in that process characteristic X-rays

are emitted.

We detect these X-rays 35m away from the target to “count the muons”.




Measuring the energy deposited.

High Purity Germanium Detector: HPGe
X-ray FPGA+ADC.

Charge Sensitive
Preamplifier
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e The Mu2e measurement is reported relative to the rate of muons
captured by the nucleus.

e  Capture rate for Al is well-known from literature and it is related
to the number of X-rays emitted at 347 keV, 844 keV and 1809
keV. Pulses are generated in the Stopping Target Monitor
(STM).

e  X-rays reach the detector, the electrons ionise the material
creating e-h pairs that drift in the detector creating the pulses
that are then shaped.

e  The signal is sent to the readout board and an ADC samples
these values in 16-bit words. 1o
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Moving Window Deconvolution Algorithm.

Signal.

ADC Counts
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Energy Spectrum.

Calibrated energy spectrum obtained from the '3’Cs and 152Eu source data, using an optimized M and L
combination that provides the best energy resolution for the STM detector based in real data.
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Need to achieve the best resolution so that we can resolve the aluminium X-rays at the Mu2e experiment.



Main contributions.

Past Results
e | have implemented the Moving Window Deconvolution (MWD) algorithm to determine the pulse heights in ADC

Counts. The input parameters of this algorithm have been tested on real X-ray data from 137-Cs and 152-Eu
radioactive sources which has allowed to calibrate the detector and optimised to achieve the best resolution using

simulated data.

e This algorithm has also been tested with data from a Test-beam at gELBE in April 2022.

2nd Year Contributions

e Development of a New HPGe Simulation has allowed to have an accurate description of the HPGe data and define
the theoretical MWD efficiency and resolution at different rates.

e Development of a Zero Suppression algorithm in C++ to reduce the amount of raw data needing to be stored and
analysed. This algorithm has also been tested on real data and simulation.



HPGe Simulation.

Poisson distribution, Pulse rate = 5 kHz

] | e Developing a simulation allows to define the MWD

of efficiency and resolution based on the rate.

b e Initially pulses where generated with the function:
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New Simulation: reproduce data kinks. Defining the function by parts.
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This change can account for the final kink at the end of the falling edge but it cannot account for the rest of the kinks observed in
the falling edge of data pulses.
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Electrons and holes arrivals (charge collection times).

Drift velocity for e and h
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Charge collection times of e and h are different because of differences in drift distances
(opposite directions towards the electrodes).

In Ge semiconductor detectors, the mobilities of e and h are somewhat similar.

The mobility of charge carriers depends on the electric field.

Simulation assumptions: All charge carriers are assumed to be generated entirely within the
active volume of the detector where the electric field has its full expectation value. The electric
field is sufficiently high to cause saturation of the drift velocity of both electron and holes:

Varir(77K, 108 V/em)=10 cm/ps.
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Induced charge in Ge detector.
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But in reality

For a single e-h pair from a single Compton scatter the induced
charges in a n-type HPGe detector is given by:

Both e- and h+ are drifting. i
t<tpandt<t. Q(t)= _ %0 _ [[n (1 + LJ) —In (1 — \“Pt>
In (ﬁ—f) ro "o /|

e- have been collected but h+ are still drifting.
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h+ have been collected but e- are still drifting.
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Both e- and h+ have been collected.

Q(’) = 4o

t >tpandt > t,

- there are several Compton/PE processes per X-ray. They occur at almost the same time but at
different locations in the detector and hence pulse produced at different times (GEANT4)
- The number of e-h pairs generated per Compton/PE process (is not one) and depends on the

energy deposited in each process.
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Geant4 HPGe Simulation.

Example of event taking place in HPGe detector:
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Mean x
Mean y
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- Some models for the pulse shape in HPGe assumes that all processes in one event take place in a fixed point
within the detector active volume : this is however not a very good approximation. 11



Geant4 HPGe Simulation.
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347, 844 and 1809 keV: X-
Rays at MuZ2e.

Spreads in positions up to
2 cm: they cannot be
considered a point in the
detector.

The simulation needs to
account for the
#comptons+phot scatters
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Induced charge in the detector.

E = 600 keV
Nen= Eleqn(Ge,77K) = 202702
Also need to accounts for:

- Preamp shaping after charge
collection process.
- Conversion to ADC counts

3
=) c;'ﬂ‘)' T T T T T T T T T
g "
S -50[— -
X E
Z _100 3

2501

el

_300:.”\H‘MHM..I...I...\.H\H‘MHI..
0 20 40 60 80 100 120 140 160 180 200
Time [us]

Plus ADC calibration and electronic noise

N, x(Q(t)/q0)

150 -

3

-100

-150

-200

-250

0 T T T T T T T T l T T T T l T T T T T T T T

-300

o O
X

44

2,

IOJI II ‘021 ll 1031 ll IOA  III

e
3

-50

Vpreamp/ q0

-100

lTTllllI'll'lllll\ll

-200

-250

|II\\||II

~300 s

Time [us]

IIII|IIII|11I

~ & .
Td(f(:a.y; ~ OO}Lb

IIl[IIIIIII

o

20

cle v b b b b b b b oy
40 60 80 100 120 140 160 180 200
Time [us]

13



ADC Counts

ADC Calibration and detector electronic noise.

Calibration: 1ADC Count = 0.57 keV. Sampling with fADC=370MHz and 0.32 mV electronic noise.
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Final Pulse Simulation at different rates.

ADC Counts
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Resolution and efficiency: Old and New Simulations.
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New ZS code: Introduction.

ADC Counts

This algorithm is based on the calculation of the gradient of the signal over a window of ADC values:

gradient [1]=ADC[i+window]-ADC[i];

Window = 100 ADC (~ 0.3 ps) : so in principle can distinguish peaks to rates well above the rates required (5 us = 200 kHz)
Gradient threshold = —100 ADC Counts.

The trigger is then established in the first point where the gradient is below the threshold chosen and we will store tpeforeMS Of
data before the trigger and t,qe, S of data after the trigger.

Algorithm is much simpler - relies on 4 parameters that can be set in FPGA registers - likely can be implemented in VHDL and
doesn’t require complication of HLS (and sychornistation with VHDL).
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Testing new ZS code on simulation.

Gradient fluctuations (due to noise in signal) cause more

than one trigger per peak.
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Testing new ZS code on simulation.

The timings chosen for storing data is tpefore= 2 s of data before the trigger and taer = 10 ys of data after the trigger.
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Testing new ZS code on simulation.
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At low rates the the suppression is very efficient, we keep ~ 1% of the raw data at 1 kHz,
25% at 20 kHz (nominal MuZ2e rate).

At higher rates > 80 kHz we keep 95% which means that we are only able to suppress 5%
of the original data.
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ZS: Testing on 137Cs data.

As expected resolution is not affected by ZS. Suppression is 98.5% (1.5% data retained)

Amount data is suppressed can also be changed slightly by amending t, ., & t.qer €9 reducing 1.5% — 1.2%
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Conclusions.

e STM DAQ for HPGe: Acquiring data, developing algorithms (MWD + Pulse Finding) and analysing data. Algorithms
optimised and tested on:
o  New Simulation: define MWD efficiency and resolution at different rates.
o Radioactive sources: Calibrate the STM Germanium detector.
o Data from a Test-beam (source data, beam data and noise data).

e Zero Suppression Algorithm: same MWD resolution and efficiency on ZS data and raw data and it is proven to be
very efficient at low rates, can suppress data up to 100 kHz. Beyond this ZS doesn’t reduce the data volume for
HPGe data due to overlapped pulses.

—_

“Fermilab — C++ / Standard Template Library Course”, held online (Fermilab, August 17 —
Conferences. September 14, 2021)

Intense Training Program: Cosmic Ray Muography November 2021, Ghent, Belgium.

HEP Forum 23rd, 24th November 2021, Cosener's House, Abingdon, Oxford.

“Viva Exam?”, including oral presentation and a report, 15th March 2022.

“Advanced Graduate Lectures on practical Tools, Applications and Techniques in HEP”, (Harwell
Science and Innovation Campus, Oxfordshire, June 13-17, 2022).

6. “STFC High Energy Physics Summer School”, lectures covering Quantum Field Theory,
Quantum Electrodynamics and Quantum Chromodynamics, the Standard Model and non-collider
phenomenological topics (neutrino, dark matter, cosmology) (Oxford,, September 4-16, 2022).
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Next Steps.

- Integrate the ZS algorithm in the full STM simulation.
- Prove the integrity of online (HLS/FPGA) ZS algorithms using known data cross-checked with offline simulation.

- Verify the implementation pre-scales for the spill and gap-triggers and demonstrate that the data to disk rate can be kept
to the required level using these pre-scales.

- Establish a full end-to-end test of the STM DAQ at Manchester verifying required data throughput rates.
- Port software and firmware to FNAL and begin commissioning of the STM at FNAL (summer 2023).

- Integrate the STM DAQ with the Mu2e DAQ (end 2023).

- Improve the simulation of the STM based on data taken at beamtests and teststands.

- Perform Monte-Carlo Studies quantifying the STM performance, demonstrating that its design goals can be achieved
with the algorithms and alignment methodologies developed.

- Write thesis covering the STM DAQ, development of pulse finding and zero-suppression algorithms and the estimated
performance that the STM can achieve based on simulation.
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Back-up...



137Cs and "5?Eu source: ADC-Energy Calibration.

MWD + Pulse Finding

137Cs peak (661.7 keV) after applying the MWD and the Pulse Finding

algorithm, the output is in ADC counts so we need a calibration between

°
ADC counts and energy.
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Calibration: the ADC peaks have been identified with the well-known
energy peaks of the Cs and Eu.
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ADC Counts

ADC Counts

MWD output shape and reconstructed energy spectrum (resolution).

Input simulated energy: 675 keV at 200 kHz.
Old simulation
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Reconstructed energy spectrum:
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New Simulation: 200 kHz. o,,,=0.32mV
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Old Simulation: Ereco: 678.045 keV

New Simulation: Ereco: 675.747 keV

New simulation brings better resolutions.

As coded right now MWD takes the
minimum value of trapezoid
reconstructing a higher height, that's
why the energy spectrum slightly
shifted to higher energies.



M value and efficiency.
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M=400 MWD finds the 6 simulated peaks below M=1000 MWD finds the 2 peaks below threshold

threshold. with wrong energy.

With M=1000 we are not able to resolve all peaks at 200 kHz affecting the efficiency of the algorithm.
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ZS: Testing on simulation.
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The MWD resolution and efficiency is same with the raw and ZS data.
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