Development of a new IceCube realtime alert using multiplet signal for optical follow-up

Nobuhiro Shimizu for the IceCube collaboration (Chiba University)

TeVPA2023 (2023 Sep. 13th)

TeVPA2023 Nobu (Chiba Univ.)

Picture: Y. Makino

Cosmic ν background

Our universe is filled with high energy ν !

IceCube collaboration PRL. **124**, 051103 (2020)

"Diffuse" flux

 \rightarrow The origin of ν is not specified = integrated whole the direction

Neutrinos flux characterization

Scenarios of the origin of diffuse neutrino Bright (high \mathcal{E}_{ν}) & Rare (small ρ_{ν}) Dim (small \mathcal{E}_{ν}) & Generous (high ρ_{ν})

Diffuse energy flux on $(\mathcal{E}_{\nu}, \rho_{\nu})$ plane

[Condition] Consistency with the diffuse flux $E^2 \phi_{\nu} \sim 10^{-8} \text{ (100 TeV)}$ [GeV· cm⁻² · s⁻¹ · sr⁻¹]

4

Diffuse energy flux on $(\mathcal{E}_{\nu}, \rho_{\nu})$ plane

[Source characterization]

 $E^2 \phi_{\nu} \sim 10^{-8}$ (100 TeV) [GeV· cm⁻² · s⁻¹ · sr⁻¹]

5

Diffuse energy flux on $(\mathcal{E}_{\nu}, \rho_{\nu})$ plane

[Which sources can be considered?]

 $E^2 \phi_{\nu} \sim 10^{-8} \text{ (100 TeV)}$ [GeV· cm⁻² · s⁻¹ · sr⁻¹]

ν-multiplet as a probe of bright sources What is multiplet?

 $N \ge 2$ coincident ν -signals in ΔT from the same direction

In terms of rate

 $R_{\text{signlet}} \propto \mathcal{E}_{\nu} \times \rho_{\nu}$ $R_{\text{doublet}} \propto (\mathcal{E}_{\nu})^2 \times \rho_{\nu}$

 $R_{\text{triplet}} \propto (\mathcal{E}_{\nu})^3 \times \rho_{\nu}$

Multiplet is sensitive to Bright (high \mathcal{E}_{ν}) & Rare (small ρ_{ν})

Expected number of ν -Multiplet signal

This is a pure number of detections. In reality, we need to further select multiplets against backgrounds.

Multiplet timing window

\Box Set ΔT = 30 days.

 \rightarrow Various sources can have time scale of month!

Technical challenge

- Long $\Delta T \rightarrow$ large # of backgrounds.
- Previous multiplet study was 100 sec
 - \rightarrow Accommodate 30 days with an improved method of BG rejection

Selection of multiplets signal

- Major background source → atmospheric neutrinos
- Focus only on **doublets** and **triplets**
- Construct a **test statistic** Λ from signal and background likelihoods: \mathcal{L}_{sig} , \mathcal{L}_{bg}

Search for multiplets in 12 years data

Performed a multiplet search with the new method.

ltem	Values
Dataset	Northern track (DEC > -5°)
Duration	2011-May to 2022-Dec.
Livetime	11.4 year
ΔT	30 days
$N_{ m expected}^{ m doublet}$	1.2×10^{7}
$N_{ m expected}^{ m triplet}$	$2.8 imes 10^4$

Dataset used for realtime alert

 \rightarrow this method will be used also for multiplet alert

Test statistic $\boldsymbol{\Lambda}$ distribution

Doublet

 $N_{\text{expected}}^{\text{doublet}} = 1.2 \times 10^7$

Result

Doublet

Result

Is this consistent with background?

The observed test statistic Λ is converted to false alarm rate (FAR) [1/yr].

FAR (Λ) \rightarrow expected rate to observe higher Λ only from backgrounds.

As a whole dataset, the observation was consistent with BG-only hypothesis.

Global p-value =
$$0.14 (1.1\sigma)$$

What can we interpret?

Using the largest Λ , we scanned the consistent region of $(\mathcal{E}_{\nu}, \rho_{\nu})$. Assumed several spectral indices $\phi \propto E^{-\gamma}$

What do the rare multiplets look like?

Though global p-value=0.14 was 1.1σ , significant multiplets are still interesting. With the criteria of FAR<1/11.4 [yr⁻¹], two multiplets were found.

The most significant multiplet Type: Doublet, (RA, DEC)=(110.05 deg, 11.05 deg) Energy: E=(6 PeV, 6 TeV), ΔT = 5.8 days, local p-value=3.2 × 10⁻⁷, FAR= 1/29 [1/yr]

2nd significant multiplet

Type: **Triplet**, (RA, DEC)=(0.58 deg, -0.35 deg) Energy: E=(4 TeV, 30 TeV, 20 TeV), $\Delta T = 16.4$ days, local p-value=7.4 × 10⁻⁷, FAR= 1/13 [1/yr]

Hunt the origin of the u-source

Use multiplet signals to hunt **bright** \times rare ν -sources **Strategy:** issue a public **multiplet** alert to other telescopes

> multiplet signal gives bias on close sources (z < 0.1)

 $\stackrel{(1)}{\longrightarrow}$ close sources are easy to observe with small telescopes

② discriminate irrelevant transients such as SNe.

> Higher angular resolution than the usual singlet signal ($\sim 1^{\circ}$)

 $\Delta \psi \sim 0.3^{\circ}$ at 90% containment \rightarrow useful for optical telescope 2 ASJ 2023 Autumn Nobu Shimizu (Chiba Univ.) Summary and plan of the alert operation

 \square Multiplet signal is a probe of **bright** & **rare** ν -sources

12 years archival data was unblinded

- As a dataset, the observed number was consistent with BG.
- Two observed multiplets satisfied FAR<1/livetime.
- Applied constraint on the ν -source parameter

□ Intensively working towards the operation of new multiplet alert!

Aiming for the start of the operation early in next year

We are happy for your cooperation of future follow-up!

Backup

Search for multiplets in 12 years data

Using the developed method, we performed multiplet search.

ltem	Values	
Dataset	Northern track (DEC > -5°)	\leftarrow the same dataset used for realtime alert
Duration	2011-May to 2022-Dec.	
Livetime	11.4 year	
ΔT	30 days	
$N_{ m expected}^{ m doublet}$	1.2×10^{7}	
$N_{ m expected}^{ m triplet}$	$2.8 imes 10^4$	\succ Atmospheric ν dominates

The background contribution is evaluated by data-driven way.

Doublet and triplet in skymap

Equatorial coordinate

Galactic coordinate

Distribution of energy and declination

Observed doublet

Binomial tests

Binomial p-value

$$P(k) = \sum_{m=k}^{N} {N \choose m} p_k^m (1-p_k)^{N-m}$$

TeVPA2023 Nobu (Chiba Univ.)

27

TS distribution

- $dN/dE \propto E^{-\gamma}$
- $N_{\rm det}^{\rm sig} = 2$
- $T_{\text{max}} = 30 \text{ days}$
- Timing distribution of signal \rightarrow uniform in $T_{\rm max}$

*the lowest bin is underflow (for triplet, no association of three tracks)

The new proposed method shows higher separation capability between BG and signal than the all-sky method (for such small N_{det}^{sig}).

Detection Efficiency of signal

Efficiency: fraction of successive trials which exceeds Λ -threshold at FAR=1/year.

1 trial : addition of N_{det} signal events into 30 days BG events

To unite both Λ_{doublet} and Λ_{triplet} , we define TS-score: TS score = max{ $-\log_{10}FAR^{\text{doublet}}(\Lambda_{\text{doublet}}), -\log_{10}FAR^{\text{triplet}}(\Lambda_{\text{triplet}})$ }

For small number of N_{det} , the new method shows O(100) higher efficiency to signal. TeVPA2023 Nobu (Chiba Univ.)

Constraint of ν -source parameter

If we do not have any ν -source (BG-only scenario)

Information to be sent in the alert

- □ Basic: time, RA, DEC, FAR, angular uncertainty
- Doublet/Triplet
- \blacksquare z-distribution, allowed region in ($\mathcal{E}_{\nu},\rho_{\nu}$) plane
- □ Matching information with a galaxy catalog (GLADE+)

Discovery potential

This becomes more apparent if we relax the requirement of signal efficiency.

Our proposed method is more optimized to "tasty" events, and shows further high performance when the requirement on the signal efficiency is loosened.