X-ray observations of a PeVatron candidate HESS J1641-463

and Felix Aharonian (DIAS)

Naomi Tsuji (Kanagawa University) Takaaki Tanaka (Konan University), Samar Safi-Harb (Manitoba University),

11–15 September, 2023 **TeVPA 2023**

HESS J1641-463 HESS Collab. 2014

2023-09-12 | TeVPA2023 | Napoli

• Unidentified, extended TeV gamma-ray source on the Galactic plane (I, b) = $(338.52^{\circ}, 0.0906^{\circ})$ •Hard TeV gamma-ray spectrum (Γ =2.07) \rightarrow Ep,c > 100 TeV @99% C.L. \rightarrow PeVatron candidate! • Coincides with a radio SNR, G338.5+0.1

Data set

•No on-axis data in soft X-ray (Chandra and XMM) New hard X-ray data with NuSTAR

Satellite Target name

GLIMPSE 8 ChandraNorma Regic ChandraNuSTAR HESS J1641-4 New (PI: Tanaka)

2023-09-12 | TeVPA2023 | Napoli

le	Obs ID	Exposure	
		(ks)	
81	11008	39.6	20
on	12508	18.5	20
-463	40401004002	81.6	20

 \mathbf{Date}

010-06-19011-06-0618 - 10 - 11

Ghandra analysis Flux image in 0.5-7 keV

ObsID 11008 (39.6 ks)

2023-09-12 | TeVPA2023 | Napoli

HESSJ1641

6.52e-08

8.70e-08

10.0090c 0070

NUSTAR analysis Flux image in 3-20 keV & stray light

Left: FPMA Middle: FPMB Right: HESS

- extension (r=3 arcmin)

2023-09-12 | TeVPA2023 | Napoli

•We extract (annulus) background in the same FoV (local background)

• Exclude the stray-light contaminated region in FPMA and rescale the flux to the TeV gamma-ray

Nercer 81

- Mercer 81
 - Star cluster candidate
 - Source: r=0.9 arcmin
- Results
 - Photon index = 3.9 ± 0.4 Gaussian at 6.6–6.7 keV
 - (2) absorbed apec - $kT = 2.1 \pm 0.4$ (for abund = 1)
 - between Chandra and NuSTAR.

2023-09-12 | TeVPA2023 | Napoli

Spectrum (Chandra + NuSTAR)

10⁻³ ' Background: annulus around source S

• (1) absorbed (power law + Gaussian)

Normalization is in good agreement

 \mathbf{N}

Fitting Model: absorbed power law • $N_H = 2x10^{22} \text{ cm}^{-2} \text{ and } \Gamma = 2$ (fix) • Obtained 2-sigma flux upper limit - (6–7)x10⁻¹³ erg/cm²/s in 2–10 keV ~3 x10⁻¹³ erg/cm²/s in 10–20 keV - Roughly consistent with Mares+ 2021

Size

n 、 $(\operatorname{arcmin}^2)$

- 18.1
- NuSTAR 28.3
- Chandra (12508) 22.8
- Chandra (11008) 15.35

2023-09-12 | TeVPA2023 | Napoli

Spectrum (Chandra + NuSTAR)

Detector	F_{2-10}	F_{10-20}	S
FPMA	4.0	1.7	
\mathbf{FPMB}	7.1	3.0	
ACIS-S (BI)	5.1		
ACIS-I	1.5		

 \mathbf{N} C \mathbf{N}

2023-09-12 | TeVPA2023 | Napoli

Modeling

2023-09-12 | TeVPA2023 | Napoli

$\mathbf{10}$

Modeling

•X-ray upper limits (this work) cannot place tight constraint, but PeVatron scenario is not excluded

· · · · · · · · · · · · · · · · · · ·			
	n (cm-3)	100	
	B (µG)	300	
	Age (kyr)	5	
	d (kpc)		
	Proton		
)	index	1.9	
	Ec (TeV)	100 - 3000	
	Wp (erg)	1.5x10 48	

1.6	10 ⁻¹⁴ 10	-5 10^{-1} 1	0 ³ 10 ⁷ 10 ¹¹ eV	2 1 10 ¹⁵
	n (cm-3)	100	Pro	bton
	B (µG)	300	index	2.0
	Age (kyr)	5	Ec (TeV)	100
	d (kpc)		Wp (erg)	1.5x10 48

Future prospect **Detectability of 2nd electrons**

- electrons
- Future hard X-ray mission
- Requirement (the case of HESS J1641) (Ec>100 TeV)

2023-09-12 | TeVPA2023 | Napoli

Needs hard X-ray observation (w/ better angular resolution) to distinguish from primary

HEX-P (NASA), FORCE \rightarrow JEDI (JAXA)

Flux >1.8x10⁻¹⁴ erg/cm²/s in 2-10 keV Flux >4.9x10⁻¹⁵ erg/cm²/s in 10-50 keV

Future prospect

Detectability of 2nd electrons

Best target?

- Hard TeV gamma-ray spectrum - 2nd synchrotron flux <10% of $\pi^0 \gamma$ -ray
- High density
- Low flux of soft X-rays (thermal and 1st Synchrotron)
- Stellar cluster, TeV unidentified sources, ...
- Hotspots in SNR RX J1713 Some might be cores of molecular clouds Requirement - 2-10 keV Flux (2nd syn.) = $2.0x10^{-14}$ cgs - 10-50 keV Flux (2nd syn.) = 1.5×10^{-14} cgs - Angular resolution <15 arcsec • Otherwise, 1st synchrotron dominates

2023-09-12 | TeVPA2023 | Napoli

Many X-ray hotspots in NW shell Higurashi, NT, Uchiyama, 2020)

Modeling

• No apparent counterpart • Obtained flux upper limit

HESS J1641–463 is an unidentified, extended TeV gamma-ray source

Summary

X-ray (Chandra and newly taken NuSTAR) data analyses $- (6-7)x10^{-13} erg/cm^2/s in 2-10 keV$ $- ~3 x 10^{-13} erg/cm^2/s in 10-20 keV$

- All models are below the observed X-ray flux - Will be tested by future (hard) X-ray missions

Calculated synchrotron emission from secondary electrons in pp interaction