Axion Stars and How to Find Them

Lars Sivertsen

Department of Physics
lowa State University
Ames, IA 50011
lars@iastate.edu

September 12, 2023

Energy conservation and axion back-reaction in an external magnetic field

Srimoyee Sen and Lars Sivertsen, JHEP 03 (2023) 097, arxiv: 2210.01149

Srimoyee Sen and Lars Sivertsen, JHEP 05 (2022) 192, arxiv: 2111.08728

Outline of the Talk

- Axions and axion-like particles
- Axion Condensates (Axion Stars)
- The modified Maxwell's Equations
- Electromagnetic Radiation from Axion Condensates
- Decay of axion stars
- Take Home Message

Axions

- The full QCD Lagrangian has a CP violating term leading to a non-zero magnetic dipole moment for the neutron
- Axions suggested as a solution to the strong CP problem
- To solve the strong CP problem, need $m_{a} f_{a} \approx m_{\pi} f_{\pi} \approx \Lambda_{Q C D}^{2}$
- Axions turns out to be extremely light (order eV or smaller), and interact very weakly with ordinary matter
- Excellent candidate for dark matter as well!

Axions and Axion-like Particles

- Particles with axion like properties are predicted by string theory
- Multiple different axions spanning many orders of magnitude
- f_{a} determined by string compactifications
- This motivates the search for axion-like particles with $m_{a} f_{a} \neq \Lambda_{Q C D}^{2}$

Axion Condensates

- Axions can form spherically symmetric, coherently oscillating lumps of Bose-Einstein condensates (axion stars) $\phi(\boldsymbol{x}, t) \approx \phi_{0} \operatorname{sech}(r / R) \cos (\omega t)$.
- Can be dense ($m_{a} R \sim 1$)
- Dominated by self interactions
- $\omega \lesssim m_{a}$
- $\phi(\boldsymbol{x}=0, t) \sim f_{a}$
- Or dilute $\left(m_{a} R \gg 1\right)$
- Dominated by gravitational interactions
- $\omega \approx m_{a}$
- $\phi(\boldsymbol{x}=0, t) \ll f_{a}$

Axion star radius vs mass

Luca Visinelli et al. Phys.Lett.B 777 (2018) 64-72

Axion Condensates

- The frequency of the condensate is dependent on the central amplitude

Elextromagnetic Radiation from Axion Stars in an External Magnetic Field

- Axion-photon Lagrangian

$$
\begin{align*}
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu} & +J_{m}^{\mu} A_{\mu}+\frac{C \beta}{4 \pi f_{a}} \phi \epsilon^{\mu \nu \lambda \rho} F_{\mu \nu} F_{\lambda \rho} \\
& +\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-V(\phi) \tag{1}
\end{align*}
$$

- To first order in $\frac{C \beta}{\pi f_{a}} \phi\left(\phi \lesssim f_{a}\right)$

$$
\begin{gather*}
\square \boldsymbol{A}_{\mathrm{r}}(\boldsymbol{x}, t)=-\frac{C \beta}{\pi f_{a}}\left(\partial_{t} \phi(\boldsymbol{x}, t)\right) \boldsymbol{B}_{0} \equiv \boldsymbol{J}_{a}(\boldsymbol{x}, t) \tag{2}\\
\square \Phi_{\mathrm{r}}(\boldsymbol{x}, t)=\frac{C \beta}{\pi f_{a}} \nabla \phi(\boldsymbol{x}, t) \cdot \boldsymbol{B}_{0} \equiv \rho_{a}(\boldsymbol{x}, t) \tag{3}\\
\left(\square+m_{a}^{2}\right) \phi(\boldsymbol{x}, t)+\partial_{\phi} V(\phi)=-\frac{C \beta}{\pi f_{a}} \boldsymbol{E}_{\mathrm{r}}(\boldsymbol{x}, t) \cdot \boldsymbol{B}_{0}(\boldsymbol{x}, t) \tag{4}
\end{gather*}
$$

Elextromagnetic Radiation from Axion Stars in an External Magnetic Field

- Axions interact extremely weakly with matter
- However, axion stars have high occupation numbers, resonance effects can occur
- Axion stars in the presence of a (strong) magnetic field will radiate, slowly changing the condensate frequency.
- Presence of a plasma can enhance radiation

Electromagnetic Radiation from Axion Condensates in External Magnetic Field

Electromagnetic Radiation from Axion Condensates in External Magnetic Field

Electromagnetic Radiation from Axion Condensates in External Magnetic Field

Electromagnetic Radiation from Axion Condensates in

 External Magnetic Field

Electromagnetic Radiation from Axion Condensates in

 External Magnetic Field

$$
\boldsymbol{B}(\boldsymbol{x}, t)
$$

Decay of axion stars

Decay of Axion Stars

Take Away Message

- Axions can form spherically symmetric axion condensates, axion stars
- Axion BEC start to give of electromagnetic radiation when subject to an external magnetic field
- For dense condensates, the frequency becomes time dependent when back-reaction is included
- Resonances can occur as time passes

Takk for at du kom!

Thanks for listening!

Extra stuff

The next slides are extra

Axion Equations of Motion

- Modified Maxwell equations

$$
\begin{align*}
& \nabla \times \boldsymbol{B}(\boldsymbol{x}, t)-\partial_{t} \boldsymbol{E}(\boldsymbol{x}, t)-\boldsymbol{J}_{m}(\boldsymbol{x}, t) \\
& \quad=-\frac{C \beta}{\pi f_{a}}\left[\left(\partial_{t} \phi(\boldsymbol{x}, t)\right) \boldsymbol{B}(\boldsymbol{x}, t)+\nabla \phi(\boldsymbol{x}, t) \times \boldsymbol{E}(\boldsymbol{x}, t)\right] \tag{5}\\
& \nabla \times \boldsymbol{E}(\boldsymbol{x}, t)=-\partial_{t} \boldsymbol{B}(\boldsymbol{x}, t) \tag{6}\\
& \nabla \cdot \boldsymbol{E}(\boldsymbol{x}, t)=\rho_{m}(\boldsymbol{x}, t)+\frac{C \beta}{\pi f_{a}} \nabla \phi(\boldsymbol{x}, t) \cdot \boldsymbol{B}(\boldsymbol{x}, t) \tag{7}\\
& \nabla \cdot \boldsymbol{B}(\boldsymbol{x}, t)=0 \tag{8}
\end{align*}
$$

- Axion Equation of motion

$$
\begin{equation*}
\left(\square+m_{a}^{2}\right) \phi(\boldsymbol{x}, t)+\partial_{\phi} V(\phi)=-\frac{C \beta}{\pi f_{a}} \boldsymbol{E}(\boldsymbol{x}, t) \cdot \boldsymbol{B}(\boldsymbol{x}, t) \tag{9}
\end{equation*}
$$

Estimation of Energy Radiated

- Energy stored in condensates $R \sim m_{a}^{-1}$

$$
\begin{equation*}
E_{\phi} \sim m_{a}^{2} \phi_{0}^{2} R^{3} \sim m_{a}^{2} f_{a}^{2} R^{3} \sim \frac{f_{a}^{2}}{m_{a}} \tag{10}
\end{equation*}
$$

- A few orders of magnitude above or below a solar mass depending on the axion mass
- Energy stored in condensates $R \gg m_{a}^{-1}$

$$
\begin{equation*}
E_{\phi} \sim m_{a}^{2} \phi_{0}^{2} R^{3} \sim \frac{m_{\mathrm{P}}^{2}}{m_{a}} \frac{1}{\left(m_{a} R\right)} \tag{11}
\end{equation*}
$$

Static External Magnetic Field

- Already found by Amin et al. to be $\left(k_{\omega}=\sqrt{\omega^{2}-\omega_{\mathrm{p}}^{2}}\right)$

$$
\begin{equation*}
\langle P(t)\rangle_{T}=\left(\frac{C \beta}{\pi f_{a}}\right)^{2}\left(\frac{\phi_{0}^{2} B_{0}^{2} \omega^{3} R^{4} \pi^{5}}{12 k_{\omega}}\right)\left(\frac{\tanh \left(\pi k_{\omega} R / 2\right)}{\cosh \left(\pi k_{\omega} R / 2\right)}\right)^{2} \tag{12}
\end{equation*}
$$

Amin2021-ir

Static External Magnetic Field

- Already found by Amin et al. (10.1007/JHEP06(2021)182) to be $\left(k_{\omega}=\sqrt{\omega^{2}-\omega_{\mathrm{p}}^{2}}\right)$

$$
\begin{equation*}
\langle P(t)\rangle_{T}=\left(\frac{C \beta}{\pi f_{a}}\right)^{2}\left(\frac{\phi_{0}^{2} B_{0}^{2} \omega^{3} R^{4} \pi^{5}}{12 k_{\omega}}\right)\left(\frac{\tanh \left(\pi k_{\omega} R / 2\right)}{\cosh \left(\pi k_{\omega} R / 2\right)}\right)^{2} \tag{13}
\end{equation*}
$$

Static External Magnetic Field

- Already found by Amin et al. (10.1007/JHEP06(2021)182) to be $\left(k_{\omega}=\sqrt{\omega^{2}-\omega_{\mathrm{p}}^{2}}\right)$

$$
\begin{equation*}
\langle P(t)\rangle_{T}=\left(\frac{C \beta}{\pi f_{a}}\right)^{2}\left(\frac{\phi_{0}^{2} B_{0}^{2} \omega^{3} R^{4} \pi^{5}}{12 k_{\omega}}\right)\left(\frac{\tanh \left(\pi k_{\omega} R / 2\right)}{\cosh \left(\pi k_{\omega} R / 2\right)}\right)^{2} \tag{14}
\end{equation*}
$$

Static External Magnetic Field

- Already found by Amin et al. (10.1007/JHEP06(2021)182) to be $\left(k_{\omega}=\sqrt{\omega^{2}-\omega_{\mathrm{p}}^{2}}\right)$

$$
\begin{equation*}
\langle P(t)\rangle_{T}=\left(\frac{C \beta}{\pi f_{a}}\right)^{2}\left(\frac{\phi_{0}^{2} B_{0}^{2} \omega^{3} R^{4} \pi^{5}}{12 k_{\omega}}\right)\left(\frac{\tanh \left(\pi k_{\omega} R / 2\right)}{\cosh \left(\pi k_{\omega} R / 2\right)}\right)^{2} \tag{15}
\end{equation*}
$$

Static External Magnetic Field

- Already found by Amin et al. (10.1007/JHEP06(2021)182) to be $\left(k_{\omega}=\sqrt{\omega^{2}-\omega_{\mathrm{p}}^{2}}\right)$

$$
\begin{equation*}
\langle P(t)\rangle_{T}=\left(\frac{C \beta}{\pi f_{a}}\right)^{2}\left(\frac{\phi_{0}^{2} B_{0}^{2} \omega^{3} R^{4} \pi^{5}}{12 k_{\omega}}\right)\left(\frac{\tanh \left(\pi k_{\omega} R / 2\right)}{\cosh \left(\pi k_{\omega} R / 2\right)}\right)^{2} \tag{16}
\end{equation*}
$$

Static External Magnetic Field

- Already found by Amin et al. (10.1007/JHEP06(2021)182) to be $\left(k_{\omega}=\sqrt{\omega^{2}-\omega_{\mathrm{p}}^{2}}\right)$

$$
\begin{equation*}
\langle P(t)\rangle_{T}=\left(\frac{C \beta}{\pi f_{a}}\right)^{2}\left(\frac{\phi_{0}^{2} B_{0}^{2} \omega^{3} R^{4} \pi^{5}}{12 k_{\omega}}\right)\left(\frac{\tanh \left(\pi k_{\omega} R / 2\right)}{\cosh \left(\pi k_{\omega} R / 2\right)}\right)^{2} \tag{17}
\end{equation*}
$$

Static External Magnetic Field, takeaways

- Radiated power vanishes exponentially with system size ωR
- Tuning plasma frequency ω_{p} allows larger condensates to radiate efficiently
- Want to see if we can have similar effects by making the external magnetic field oscillate

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Oscillating External Magnetic Field

- When $\boldsymbol{B}_{0} \rightarrow \boldsymbol{B}_{0} \cos (\Omega t)$, the effective frequency splits in two $\omega \rightarrow \omega \pm \Omega$, wavenumber $k_{ \pm}=|\Omega \pm \omega|$

Static External Magnetic Field

- Already found by Amin et al. to be $\left(k_{\omega}=\sqrt{\omega^{2}-\omega_{\mathrm{p}}^{2}}\right)$

$$
\begin{equation*}
\langle P(t)\rangle_{T}=\left(\frac{C \beta}{\pi f_{a}}\right)^{2}\left(\frac{\phi_{0}^{2} B_{0}^{2} \omega^{3} R^{4} \pi^{5}}{12 k_{\omega}}\right)\left(\frac{\tanh \left(\pi k_{\omega} R / 2\right)}{\cosh \left(\pi k_{\omega} R / 2\right)}\right)^{2} \tag{18}
\end{equation*}
$$

Amin2021-ir

