Galactic cosmic rays : current status and open questions

Yoann Génolini

Collaborators :

M. Boudaud, P.-I. Batista, S. Caroff, M. Cireli, L. Derome, J. Lavalle, M. Ahlers A. Marcowith, D. Maurin, I. Moskalenko V.Poireau, V. Poulin, S. Rosier, P. Salati, P. D. Serpico, M. Unger, M. Vecchi and N. Weinrich

https://github.com/crdb-project/tutorial/blob/main/gallery.ipynb

2

Some pending questions of galactic CRs :

Sources

What are the sources of GCRs/acceleration mec.? Is CR acceleration universal? What is their respective contribution to the flux? What is the maximum energy of GCRs? Does the escape impact the injected flux? What is their distribution in the galaxy? Are there exotic (!=astrophysical) sources?

See also the recent review: Gabici+ (2019)

Some pending questions of galactic CRs :

Transport

What are the dominating transport mech.? Is the transport universal? How does the transport depend on the ISM? What is the origin of the diffusive halo? Is the transport homogeneous in the galaxy?

Sources

What are the sources of GCRs/acceleration mec.? Is CR acceleration universal? What is their respective contribution to the flux? What is the maximum energy of GCRs? Does the escape impact the injected flux? What is their distribution in the galaxy? Are there exotic (!=astrophysical) sources?

See also the recent review: Gabici+ (2019)

Some pending questions of galactic CRs :

Local environement

What is the effect of the solar wind on local fluxes? Is the local flux close to the averaged galactic one? What is the contribution of local sources? What is the origin of the anisotropies? Is the local underdensity affecting local fluxes?

Transport

What are the dominating transport mech.? Is the transport universal?

How does the transport depend on the ISM? What is the origin of the diffusive halo? Is the transport homogeneous in the galaxy?

Sources

What are the sources of GCRs/acceleration mec.? Is CR acceleration universal? What is their respective contribution to the flux? What is the maximum energy of GCRs? Does the escape impact the injected flux? What is their distribution in the galaxy? Are there exotic (!=astrophysical) sources?

See also the recent review: Gabici+ (2019)

Some pending questions of galactic CRs :

Local environement

What is the effect of the solar wind on local fluxes? Is the local flux close to the averaged galactic one? What is the contribution of local sources? What is the origin of the anisotropies? Is the local underdensity affecting local fluxes?

Transport

What are the dominating transport mech.? Is the transport universal?

How does the transport depend on the ISM? What is the origin of the diffusive halo? Is the transport homogeneous in the galaxy?

Sources

What are the sources of GCRs/acceleration mec.? Is CR acceleration universal? What is their respective contribution to the flux? What is the maximum energy of GCRs? Does the escape impact the injected flux? What is their distribution in the galaxy? Are there exotic (!=astrophysical) sources?

See also the recent review: Gabici+ (2019)

Game changer: high-quality data! → In this talk focus on direct detection experiments

 Op. since:
 12yrs
 8.5yrs
 8yrs
 7.5yrs
 3.5yrs

 Published E-range
 1 GV - 1.9 TV
 1 TeV - 500 TeV
 10 GeV - 100 TeV
 10 GeV - 100 TeV
 1TeV-500 TeV

Spectrometer

→ Precision level % from GV to TV
→ Spectrometer : able to measure isotopes

Calorimeters

 \rightarrow High-statistics up to 100TeV

→ Bridging the gap with air-shower experiments

5

Game changer: high-quality data!

Game changer: high-quality data!

Game changer: high-quality data! → Disapointment : no COVARIANCE MATRICES of errors Examples : AMSO2 and DAMPE error splitting of B/C

6

Game changer: high-quality data! → Disapointment : no COVARIANCE MATRICES of errors

Systematic uncertainties dominate \rightarrow Even more so for combine fits

Game changer: high-quality data! → Disapointment : no COVARIANCE MATRICES of errors

Examples : AMSO2 and DAMPE error splitting of B/C

Game changer: high-quality data! → Disapointment : no COVARIANCE MATRICES of errors

Examples : AMSO2 and DAMPE error splitting of B/C

Systematic uncertainties dominate \rightarrow Even more so for combine fits

Proper hypotheses testing impossible
 Decrease the constraining power of the new data..

Experimental collaborations should sytematically provide the covariance matrix of systematic errors.

- → Hopes with next AMSO2 releases of isotopes?
- → First-guess covariance matrix for AMSO2 data in Derome,..,Y.G., A&A (2019), Heisig et al., PRR (2020)

Cosmic-ray transport

Prediction of secondary (anti)particles

What is next?

Resolution of **CR transport equation** in steady state:

$$\frac{\partial \psi_{\alpha}}{\partial t} - \vec{\nabla}_{\mathbf{x}} \left\{ K(E) \, \vec{\nabla}_{\mathbf{x}} \psi_{\alpha} - \vec{V}_{c} \psi_{\alpha} \right\} + \frac{\partial}{\partial E} \left\{ b_{\text{tot}}(E) \, \psi_{\alpha} - \beta^{2} \, K_{pp} \, \frac{\partial \psi_{\alpha}}{\partial E} \right\}$$

Ginzburg&Syrovatskii (1964)

$$+\sigma_{\alpha} v_{\alpha} n_{\rm ism} \psi_{\alpha} + \Gamma_{\alpha} \psi_{\alpha} = q_{\alpha} + \sum_{\beta} \left\{ \sigma_{\beta \to \alpha} v_{\beta} n_{\rm ism} + \Gamma_{\beta \to \alpha} \right\} \psi_{\beta} .$$

in a cylindrical geometry.

Resolution of CR transport equation in steady state:

$$\frac{\partial \psi_{\alpha}}{\partial t} - \vec{\nabla}_{\mathbf{x}} \left\{ K(E) \, \vec{\nabla}_{\mathbf{x}} \psi_{\alpha} - \vec{V}_{c} \psi_{\alpha} \right\} + \frac{\partial}{\partial E} \left\{ b_{\text{tot}}(E) \, \psi_{\alpha} - \beta^{2} \, K_{pp} \, \frac{\partial \psi_{\alpha}}{\partial E} \right\}$$

 $+\sigma_{\alpha} v_{\alpha} n_{\rm ism} \psi_{\alpha} + \Gamma_{\alpha} \psi_{\alpha} = q_{\alpha} + \sum_{\beta} \left\{ \sigma_{\beta \to \alpha} v_{\beta} n_{\rm ism} + \Gamma_{\beta \to \alpha} \right\} \psi_{\beta} .$

in a cylindrical geometry.

Ginzburg&Syrovatskii (1964)

Remarks on the CR transport equation

- \rightarrow Diffusion, convection, E-losses, reacceleration, spallation
- \rightarrow Ingredients introduced ~60 yrs ago still satisfying
- \rightarrow Non exhaustive list of fitted parameters :

 $K = K_0 \beta R^{\delta} / V_c / V_A / L / ...$

- → Effective transport param. = average over kpc scales
 - pros : learn generic properties of transport/sources
 - cons : several processes intricated
- \rightarrow Precise determination of transport param.
 - link **µ-physics**
 - prediction secondaries (antipart.)

Resolution of **CR transport equation** in steady state:

$$\frac{\partial \psi_{\alpha}}{\partial t} - \vec{\nabla}_{\mathbf{x}} \left\{ K(E) \, \vec{\nabla}_{\mathbf{x}} \psi_{\alpha} - \vec{V}_{c} \psi_{\alpha} \right\} + \frac{\partial}{\partial E} \left\{ b_{\text{tot}}(E) \, \psi_{\alpha} - \beta^{2} \, K_{pp} \, \frac{\partial \psi_{\alpha}}{\partial E} \right\}$$
$$+ \sigma_{\alpha} \, v_{\alpha} \, n_{\text{ism}} \, \psi_{\alpha} + \Gamma_{\alpha} \, \psi_{\alpha} = q_{\alpha} + \sum_{\beta} \left\{ \overline{\sigma_{\beta \to \alpha}} v_{\beta} n_{\text{ism}} + \Gamma_{\beta \to \alpha} \right\} \, \psi_{\beta} \, .$$

Ginzburg&Syrovatskii (1964)

in a cylindrical geometry.

Usual assumptions of the resolution

- \rightarrow Steady state is reached
- \rightarrow Sources are distributed homogeneously in the galaxy
- \rightarrow Injection scaling : single powerlaw q = C x R $^{\alpha}$
- \rightarrow Diffusion is homogeneous and isotropic
- \rightarrow Diffusion scaling : single powerlaw K = K₀ β R^{δ} Jokipii (1966)
- \rightarrow Injection and diffusion are universal (i.e. among species)
- \rightarrow Spallation cross sections are well-known
- \rightarrow Energy losses are well-known
- \rightarrow Local ISM has no impact on local fluxes

Resolution of **CR transport equation** in steady state:

$$\frac{\partial \psi_{\alpha}}{\partial t} - \vec{\nabla}_{\mathbf{x}} \left\{ \underline{K(E)} \, \vec{\nabla}_{\mathbf{x}} \psi_{\alpha} - \vec{V_{c}} \psi_{\alpha} \right\} + \frac{\partial}{\partial E} \left\{ b_{\text{tot}}(E) \, \psi_{\alpha} - \beta^{2} \, K_{pp} \, \frac{\partial \psi_{\alpha}}{\partial E} \right\} \qquad \text{Gir}$$
$$+ \sigma_{\alpha} \, v_{\alpha} \, n_{\text{ism}} \, \psi_{\alpha} + \Gamma_{\alpha} \, \psi_{\alpha} = \ q_{\alpha} + \sum_{\beta} \left\{ \overline{\sigma_{\beta \to \alpha}} v_{\beta} n_{\text{ism}} + \Gamma_{\beta \to \alpha} \right\} \, \psi_{\beta} \, .$$

Ginzburg&Syrovatskii (1964)

in a cylindrical geometry.

- → Steady state is reached
- \rightarrow Sources are distributed homogeneously in the galaxy
- \rightarrow Injection scaling : single powerlaw q = C x R $^{\alpha}$
- \rightarrow Diffusion is homogeneous and isotropic
- \rightarrow Diffusion scaling : single powerlaw K = K₀ β R⁶
 - → Injection and diffusion are universal (i.e. among species)
 - → Spallation cross sections are well-known
 - → Energy losses are well-known
 - → Local ISM has no impact on local fluxes

Resolution of **CR transport equation** in steady state:

$$\frac{\partial \psi_{\alpha}}{\partial t} - \vec{\nabla}_{\mathbf{x}} \left\{ K(E) \vec{\nabla}_{\mathbf{x}} \psi_{\alpha} - \vec{V}_{c} \psi_{\alpha} \right\} + \frac{\partial}{\partial E} \left\{ b_{\text{tot}}(E) \psi_{\alpha} - \beta^{2} K_{pp} \frac{\partial \psi_{\alpha}}{\partial E} \right\} + \sigma_{\alpha} v_{\alpha} n_{\text{ism}} \psi_{\alpha} + \Gamma_{\alpha} \psi_{\alpha} = q_{\alpha} + \sum_{\beta} \left\{ \overline{\sigma_{\beta \to \alpha}} v_{\beta} n_{\text{ism}} + \Gamma_{\beta \to \alpha} \right\} \psi_{\beta} .$$

Ginzburg&Syrovatskii (1964)

in a cylindrical geometry.

Challenged by % precise data! → **Usual assumptions** of the resolution

- Steady state is reached
- Sources are distributed homogeneously in the galaxy
- Rules to challenge hypothesis
- → Chose a minimal setup based on usual assumptions
 → Add a novel ingredient
 → Check the preference of the data on a statistical basis
 → Covariance matrix required
 - Local ISM has no impact on local fluxes

Universal break in the spectra around 300 GV!

Universal break(s) in the spectra!

What is their origins?

Injection?

Local source?

Diffusion?

 $\frac{\partial \psi_{\alpha}}{\partial t} - \vec{\nabla}_{\mathbf{x}} \left\{ K(E) \vec{\nabla}_{\mathbf{x}} \psi_{\alpha} - \vec{V}_{c} \psi_{\alpha} \right\} + \frac{\partial}{\partial E} \left\{ b_{\text{cot}}(E) \psi_{\alpha} - \beta^{2} K_{\rho} \frac{\partial \psi_{\alpha}}{\partial E} \right\} \\ + \sigma_{\alpha} \phi_{\alpha} n_{\text{ism}} \psi_{\alpha} + \Gamma_{\rho} \psi_{\alpha} = q_{\alpha} + \sum_{\beta} \left\{ \sigma_{\beta \to \alpha} v_{\beta} n_{\text{ism}} + \Gamma_{\rho \to \alpha} \right\} \psi_{\beta} .$

Solution of CR transport equation : pure diffusive case

 $\overset{\rightarrow \text{Equation}}{\text{Cosmic-ray transport}} \rightarrow \text{Breaks}?$

Primaries e.g. Vladimirov+ (2012), Niu+ (2018, 2019, 2020); Tomassetti+ (2015) Secondaries e.g. Tomassetti+ (2012);Y.G.+ (2014);Tomassetti+ (2017); Zhang+ (2023) Reacceleration e.g. Tomassetti+ (2012); Yuan+ (2020)

$\overset{\rightarrow \text{Equation}}{\text{Cosmic-ray transport}} \rightarrow \text{Breaks}?$

Pheno : Vladimirov+ (2012); Y.G+ (2017); Niu+ (2020); Explanation : Tomassetti (2012);Amato+ (2012);Evoli +(2019);

$\overset{\rightarrow \text{Equation}}{\text{Cosmic-ray transport}} \rightarrow \text{Breaks}?$

Universal break(s) in the spectra!

Cosmic-ray transport

Prediction of secondary (anti)particles

What is next?

A refined treatment of uncertainties

 \rightarrow Data: AMSO2 antiproton from 2016

 \rightarrow Model: semi-analytical (USINE) (Maurin 2020) Comparison with data = discrepancy ~ few 10GV

 \rightarrow Chi2-test:

 $\chi^2/dof \approx 1.7$ $p_{value} \approx 10^{-3}$

A refined treatment of uncertainties

- \rightarrow Data: AMSO2 antiproton from 2016
- → Model: semi-analytical (USINE) (Maurin 2020) Comparison with data = discrepancy ~ few 10GV
- \rightarrow Errors on the data

Small total error / Different correlation lengths Dominated by acceptance around the excess

 \rightarrow Covariance matrix estimated from detector info.

A refined treatment of uncertainties

- \rightarrow Data: AMSO2 antiproton from 2016
- → Model: semi-analytical (USINE) (Maurin 2020) *Comparison with data = discrepancy ~ few 10GV*
- \rightarrow Errors on the data

Small total error / Different correlation lengths Dominated by acceptance around the excess

 \rightarrow Covariance matrix estimated from detector info.

A refined treatment of uncertainties

- \rightarrow Data: AMSO2 antiproton from 2016
- → Model: semi-analytical (USINE) (Maurin 2020) Comparison with data = discrepancy ~ few 10GV

\rightarrow Errors on the data

Small total error / Different correlation lengths Dominated by acceptance around the excess

 \rightarrow Covariance matrix estimated from detector info.

\rightarrow Errors on the model

- Pbar production cross-sections
 (Winkler, M. 2016, Korsmeier+ 2018)
 (Aduszkiewicz+2017, Anticic+ 2010, Aaij+2018)
- \rightarrow Updated parameterisation and uncertainties

- Transport

(Y..G.+ 2017/19/21, Derome+ 2019, Weinrich, Y.G.+ 2020)

- \rightarrow Updated transport models and uncertainties
- Parents

(AMSO2 Collab. 2017, 2019)

- \rightarrow Updated fit and contribution of high-Z elements
- 19 \rightarrow Refined covariance matrix for the model

A refined treatment of uncertainties

- \rightarrow Data: AMSO2 antiproton from 2016
- → Model: semi-analytical (USINE) (Maurin 2020) Comparison with data = discrepancy ~ few 10GV

\rightarrow Errors on the data

Small total error / Different correlation lengths Dominated by acceptance around the excess

 \rightarrow Covariance matrix estimated from detector info.

\rightarrow Errors on the model

- Pbar production cross-sections
 (Winkler, M. 2016, Korsmeier+ 2018)
 (Aduszkiewicz+2017, Anticic+ 2010, Aaij+2018)
- \rightarrow Updated parameterisation and uncertainties

- Transport

(Y..G.+ 2017/19/21, Derome+ 2019, Weinrich, Y.G.+ 2020)

- \rightarrow Updated transport models and uncertainties
- Parents

(AMSO2 Collab. 2017, 2019)

- \rightarrow Updated fit and contribution of high-Z elements
- $19 \rightarrow$ Refined covariance matrix for the model

Statistical tests (Boudaud, Y.G.+ 2019)

→ Chi2 definition:

 $\chi^2 = (\text{data-model})^{\mathrm{T}} (\mathcal{C}^{\text{model}} + \mathcal{C}^{\text{data}})^{-1} (\text{data-model})$

→ Chi2-test:

$$\chi^2/dof = 0.77$$

$$p_{value} = 0.90$$

 \rightarrow KS-test:

 $p_{value} = 0.27$

AMS-02 antiprotons are consistent with a secondary astrophysical origin Other studies confirmed Heisig+ (2020); Reneirt+ (2018)

Before claiming execesses carefull statistical studies must be performed! e.g. claimed excess in Li, Fe, ...

Going beyond : transport and cross-sections main uncertainties Korsmeier+ (2018);Y.G.+ (2018);

Cosmic-ray transport

Prediction of secondary (anti)particles

What is next?

Critical role of fragmentation cross-sections

Cross-sections status

- \rightarrow No/few data above 1GeV
- \rightarrow Flat extrapolation high-E
- → Inconsistent data/models

40 What is next? Li/C Be/C 30 20 [%]00/00 0/00 00-10 Critical role of fragmentation cross-sections Models $\propto \sigma(C + (H, He) \rightarrow B)$ -20 0.35 -30 Current uncertainty Data intrinsic uncertainties -40 40 Data ~ 3% 0.3 B/C F/Si 30 0.25 20 Models ~ 10-15% 0.2 B/C 10 $\Delta D_0 / D_0 [\%]$ 0.15 0 -100.1 -20 0.05 -30 -4010 10^{2} 10^{3} 10^{4} -5 Ò 5 -5 Ò 5 10 10 $\Delta \delta / \delta [\%]$ $\Delta \delta / \delta [\%]$ R [GV] • [Fo77] ${\rm ^{12}C} \rightarrow {\rm ^{10}B}$ GP12[Fo77] GP12 $^{12}C \rightarrow ^{-11}B$ 35 50 WKS98 WKS98 [Ko02] [Ko02] **Cross-sections status** Flux impact: W03* W03* [Ko99] [Ko99] 30 Li 0.64% W03e W03c [O183] [O183] Be 0.64% \rightarrow No/few data above 1GeV 40 [W90]r [W90]r 25B 7.41% $[\mathrm{dm}]$ qui 20 [We98] [We98] **Consequences on** → Flat extrapolation high-E ь 30^т transport param. \rightarrow Inconsistent data/models 1510 20 State of the art in Y.G.+ (2018) 5 10^{0} 10^{1} 10^{-1} 10^{0} 10^{1} $E_{k/n}$ [GeV/nucleon] $E_{k/n}$ [GeV/nucleon]

New measurements are required!

Dificulty : more than 1000 reactions are involved ..

 \rightarrow Selection rules Y.G.+ (2018)

→ Proposition of new measurements beam + target experiment (e.g. : NA61)

Y.G., Maurin, Moskalenko, Unger (2023)

$N_{\rm int}$	$^{22}Ne+H$	20k
60k	²⁸ Si+He	10k
50k	$^{27}Al+H$	10k
20k	$^{26}Mg+H$	10k
10k	²⁴ Mg+He	10k
10k	23 Na+H	10k
10k	$^{25}Mg+H$	10k
10k	21 Ne+H	10k
5k	20 Ne+He	10k
5k	${}^{32}S+H$	5k
5k	29 Si+H	5k
$N(\leq \Omega) = 1.9 \times 10^5$	22 Ne+He	5k
50k	1	$V(\le Si) = 3.8 \times 10^5$
50k	56 Fe+H	30k
50k	56 Fe+He	10k
20k	Λ	$N(\leq Fe) = 4.2 \times 10^5$
	$\frac{N_{\text{int}}}{60\text{k}}$ 50k 20k 10k 10k 10k 10k 5k 5k 5k 5k $5(\le 0) = 1.9 \times 10^5$ 50k 50k 50k 20k	$\begin{array}{c c} \hline N_{\rm int} & & ^{22}{\rm Ne} + {\rm H} \\ \hline & & ^{60k} & & ^{28}{\rm Si} + {\rm He} \\ \hline & & ^{50k} & & ^{27}{\rm Al} + {\rm H} \\ \hline & & ^{26}{\rm Mg} + {\rm H} \\ \hline & & ^{24}{\rm Mg} + {\rm He} \\ \hline & & ^{10k} & & ^{23}{\rm Na} + {\rm H} \\ \hline & & ^{10k} & & ^{25}{\rm Mg} + {\rm H} \\ \hline & & ^{10k} & & ^{21}{\rm Ne} + {\rm H} \\ \hline & & ^{5k} & & ^{20}{\rm Ne} + {\rm He} \\ \hline & & ^{5k} & & ^{29}{\rm Si} + {\rm H} \\ \hline & & ^{5k} & & ^{29}{\rm Si} + {\rm H} \\ \hline & & ^{50k} & & & & & & \\ \hline & & ^{50k} & & & & & & & \\ \hline & & ^{50k} & & & & & & & & \\ \hline & & ^{56}{\rm Fe} + {\rm He} \\ \hline & & & ^{56}{\rm Fe} + {\rm He} \\ \hline & & & & & & & & & & & \\ \hline & & & & &$

- → Quantifying the **improvments**:
 - Precise determination of transport parameters
 - Challenging universality
 - Scrutinize excesses in secondaries

New measurements are required!

Dificulty : more than 1000 reactions are involved ..

 \rightarrow Selection rules Y.G. + (2018)

→ Proposition of new measurements beam + target experiment (e.g. : NA61)

Y.G., Maurin, Moskalenko, Unger (2023)

N	$22 N_{\odot} + TT$	
2 'int	Ne+H	20k
60k	²⁸ Si+He	10k
50k	²⁷ Al+H	10k
20k	$^{26}Mg+H$	10k
10k	²⁴ Mg+He	10k
10k	²³ Na+H	10k
10k	$^{25}Mg+H$	10k
10k	21 Ne+H	10k
5k	20 Ne+He	10k
5k	${}^{32}S+H$	5k
5k	29 Si+H	5k
$(< 0) = 1.9 \times 10^5$	22 Ne+He	5k
50k	N(\leq Si) = 3.8 × 10 ⁵
50k	56 Fe+H	30k
50k	56 Fe+He	10k
20k	N(\leq Fe) = 4.2 × 10 ⁵
	$\begin{array}{c} 60k \\ 50k \\ 20k \\ 10k \\ 10k \\ 10k \\ 10k \\ 5k \\ $	$\begin{array}{c c} & 2^8 {\rm Si} + {\rm He} \\ & 50 {\rm k} & 2^7 {\rm Al} + {\rm H} \\ & 20 {\rm k} & 2^6 {\rm Mg} + {\rm H} \\ & 10 {\rm k} & 2^{43} {\rm Mg} + {\rm He} \\ & 10 {\rm k} & 2^{25} {\rm Mg} + {\rm H} \\ & 10 {\rm k} & 2^{15} {\rm Mg} + {\rm H} \\ & 10 {\rm k} & 2^{15} {\rm Mg} + {\rm H} \\ & 10 {\rm k} & 2^{15} {\rm Mg} + {\rm H} \\ & 10 {\rm k} & 2^{15} {\rm Mg} + {\rm H} \\ & 10 {\rm k} & 2^{15} {\rm Mg} + {\rm H} \\ & 50 {\rm k} & 3^2 {\rm S} + {\rm H} \\ & 50 {\rm k} & 3^2 {\rm S} + {\rm H} \\ & 5 {\rm k} & 2^9 {\rm Si} + {\rm H} \\ & 5 {\rm k} & 2^9 {\rm Si} + {\rm H} \\ & 50 {\rm k} & 5^{66} {\rm Fe} + {\rm He} \\ & 50 {\rm k} & 5^{66} {\rm Fe} + {\rm He} \\ & 20 {\rm k} & N({\rm s} -{\rm Si} {\rm Si} + {\rm Si} {\rm S$

- \rightarrow Quantifying the **improvments**:
 - Precise determination of transport parameters
 - Challenging universality
 - Scrutinize excesses in secondaries

New measurements are required!

Dificulty : more than 1000 reactions are involved ..

 \rightarrow Selection rules Y.G. + (2018)

→ Proposition of new measurements beam + target experiment (e.g. : NA61)

Y.G., Maurin, Moskalenko, Unger (2023)

-	 NT	22 No. 1 H	001-
reaction	Nint	Ne+H	20k
$^{16}O + H$	60k	²⁸ Si+He	10k
${}^{12}C+H$	50k	²⁷ Al+H	10k
$^{16}O+He$	20k	²⁶ Mg+H	10k
${}^{11}B+H$	10k	²⁴ Mg+He	10k
$^{15}N + H$	10k	²³ Na+H	10k
$^{14}N + H$	10k	$^{25}Mg+H$	10k
$^{12}C+He$	10k	21 Ne+H	10k
¹⁰ B+H	5k	20 Ne+He	10k
$^{13}C+H$	5k	${}^{32}S+H$	5k
⁷ Li+H	5k	$^{29}Si + H$	5k
121 11	$N(< \Omega) = 1.9 \times 10^5$	22 Ne+He	5k
28 CL + TT	r(<u>_</u>) = 1.0 × 10	N(\leq Si) = 3.8 × 10 ⁵
²⁰ Si+H	50k	56 12. 1 11	201
²⁴ Mg+H	50k	Fe+H	30k
20 Ne+H	50k	⁵⁶ Fe+He	10k
22 Ne+H	20k	N(\leq Fe) = 4.2×10^5

Y.G., Maurin, Moskalenko, Unger (2023)

- → Quantifying the **improvments**:
 - Precise determination of transport parameters
 - Challenging universality
 - Scrutinize excesses in secondaries

Antiprotons

New measurements are required!

Dificulty : more than 1000 reactions are involved ..

 \rightarrow Selection rules Y.G. + (2018)

→ Proposition of new measurements beam + target experiment (e.g. : NA61)

Y.G., Maurin, Moskalenko, Unger (2023)

reaction	$N_{\rm int}$	$^{22}Ne+H$	20k
¹⁶ O+H	60k	²⁸ Si+He	10k
${}^{12}C+H$	50k	$^{27}Al+H$	10k
$^{16}\mathrm{O+He}$	20k	$^{26}Mg+H$	10k
${}^{11}B+H$	10k	²⁴ Mg+He	10k
$^{15}N + H$	10k	²³ Na+H	10k
$^{14}N + H$	10k	$^{25}Mg+H$	10k
$^{12}C+He$	10k	21 Ne+H	10k
$^{10}B + H$	5k	20 Ne+He	10k
${}^{13}C+H$	5k	${}^{32}S+H$	5k
⁷ Li+H	5k	$^{29}Si+H$	5k
	$N(\le O) = 1.9 \times 10^5$	22 Ne+He	5k
$^{28}S; \perp H$	5012		$N(\leq Si) = 3.8 \times 10^5$
$^{24}M_{\sigma}\pm H$	50k	56 Fe+H	30k
$^{20}No \pm H$	50k	56 Fe+He	10k
$^{22}No+H$	2012	i.	$N(\le Fe) = 4.2 \times 10^5$
Ne+11	20K		·_ /

Y.G., Maurin, Moskalenko, Unger (2023)

- \rightarrow Quantifying the **improvments**:
 - Precise determination of transport parameters
 - Challenging universality
 - Scrutinize excesses in secondaries

Next generation experiments:

	HELIX	HERD	AMS100	ALADINO
			AMS-100 Agent Certific Models Service Models	
	Park+ (2019)	Mori+ (2022)	Shael+ (2019)	Battiston+ (2021)
Expected in	2024	2027	2030?	2040?
Туре	Spectrometer	Calorimeter	Spectrometer	Spectrometer
Main focus	10Be/9Be	gamma, e+e-, nuclei	(anti)leptons,(anti)nuclei	(anti)leptons,(anti)nuclei
	0.2→10GeV/n	0.5, 10GeV→ 100TeV 30 GeV → 3PeV	100TV and beyond	20TV and beyond

Conclusion

Important points :

- \rightarrow Precision era, % precision data GeV-TeV
- → The main process of CR transport diffusion is being elucidating
- → Many open questions (universality, homogeneity, local effect, ..) need finer (multimessenger) studies & proper modeling see e.g. Korsmeier+ (2022); Zhao+ (2021); Bouyahiaoui+ (2018)
- → Antinuclei (positrons, antipotons, antideuterons?, antihelium?) are still intringuing

Take home messages :

CR experimental collaborations : please provide covariance matrices of data Particle physicists : please (re)measure nuclear fragmentation cross-sections Phenomenologist/Theorist : - please keep in mind systematics (e.g. exp. and cross section) - continue investigating unexplored/sublte effects (%!) - link the phenomenology with micro-physics

Thank you!

New measurements are required!

Dificulty : more than 1000 reactions are involved ...

- \rightarrow Selection rules Y.G. + (2018)
- \rightarrow Proposition of new measurements beam + target experiment (e.g. : NA61) Y.G., Maurin, Moskalenko, Unger (2023)
- \rightarrow Quantifying the **improvments**

	1	
	0.08 -	
	0.07 -	
	0.06 -	
N_{int}	0.05 -	
60k 50k	습 0.04 -	
20k 10k	0.03 -	
10k	0.02 -	
10k 5k	0.01 -	
5k 51-	0.00	
$N(\le O) = 1.9 \times 10^5$		-7
	-30	
	-40	
	$\frac{N_{int}}{60k} \\ 50k \\ 20k \\ 10k \\ 10k \\ 10k \\ 10k \\ 10k \\ 5k \\ 5k \\ 5k \\ 5k \\ 5k \\ N(\le O) = 1.9 \times 10^5$	$\begin{array}{c} 0.08 \\ 0.07 \\ 0.06 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.$

Yoann Génolini