Minimal sterile neutrino dark matter

Based on Phys. Rev. D 107 (2023) 7, L071702

Paul Frederik Depta Max-Planck-Institut für Kernphysik

In collaboration with T. Bringmann, M. Hufnagel, J. Kersten, J. T. Ruderman, and K. Schmidt-Hoberg

TeVPA 2023 12 September 2023

Minimal sterile neutrino dark matter | Paul Frederik Depta | 12 September 2023

Simplest allowed model for sterile neutrino DM production!

Outline

- Sterile neutrino dark matter
- Alternative production mechanisms
- Exponential growth of sterile neutrino dark matter
- Conclusions

Sterile neutrino dark matter

- Sterile neutrino (right-handed, gauge singlet, mass mixing θ with active neutrino) is excellent candidate for dark matter
- Dodelson-Widrow mechanism (Dodelson and Widrow hep-ph/9303287)
 - Oscillations between active and sterile neutrinos produce abundance of sterile neutrinos
 - Mostly active around $T \sim 130 \,\mathrm{MeV}(m_s/1 \,\mathrm{keV})^{1/3}$
 - $\Omega_s h^2 \sim 0.1 \left(\frac{\sin^2(2\theta)}{10^{-8}} \right) (m_s/1 \text{ keV})^2$

Asaka, Laine, and Shaposhnikov hep-ph/0612182

4

Sterile neutrino dark matter

- Sterile neutrino (right-handed, gauge singlet, mass mixing θ with active neutrino) is excellent candidate for dark matter
- Dodelson-Widrow mechanism (Dodelson and Widrow hep-ph/9303287)
 - Oscillations between active and sterile neutrinos produce abundance of sterile neutrinos
 - Mostly active around $T \sim 130 \,\mathrm{MeV}(m_s/1 \,\mathrm{keV})^{1/3}$
 - $\Omega_s h^2 \sim 0.1 \left(\frac{\sin^2(2\theta)}{10^{-8}} \right) (m_s/1 \text{ keV})^2$
- Decay $\nu_s
 ightarrow \nu_a \gamma$ at one-loop level (Abazajian, Fuller, and Tucker astro-ph/ 0106002)
 - $\Gamma_{\nu_s \to \nu_{\alpha} \gamma} \simeq 2 \times 10^{-23} \,\mathrm{yr}^{-1} \left(\sin^2(2\theta) / 10^{-8} \right) \, (m_s / 1 \,\mathrm{keV})^5$
 - Constraints from X-ray searches

- Shi-Fuller mechanism (Shi and Fuller astro-ph/9810076):
 - Large lepton asymmetry leads to resonant oscillations and enhances production
 - Problems: origin of asymmetry; bounds from X-rays, Lyman- α , and BBN already very strong

- Shi-Fuller mechanism (Shi and Fuller astro-ph/9810076):
 - Large lepton asymmetry leads to resonant oscillations and enhances production \bullet
- Decay of scalar (Shaposhnikov and Tkachev hep-ph/0604236; Kusenko hep-ph/0609081; Petraki and Kusenko 0711.4646; Roland, Shakya, and Wells 1412.4791; Merle and Trotzauer 1502.01011; König, Merle, and Trotzauer 1609.1289)
- Extended gauge sector (Bezrukov, Hettmansperger, and Lindner 0912.4415; Kusenko, Takashashi, and Yanagida 1006.1731; Dror et al. 2004.09511)
- New interactions of active neutrinos (De Gouvêa et al. 1910.04901; Kelly et al. 2005.03681; Chichi et al. 2111.04087; Benso et al. 2112.00758)
- New interactions of sterile neutrinos (Hansen and Vogl 1706.02707; Johns and Fuller 1903.08296; Bringmann, PFD et al. 2206.10630)

Problems: origin of asymmetry; bounds from X-rays, Lyman- α , and BBN already very strong

New interactions of sterile neutrinos

- Model setup:

•
$$\mathscr{L}_m = -\frac{1}{2}\overline{\nu_s^c}m_s\nu_s - \overline{\nu_\alpha}m_{\alpha s}\nu_s - \frac{1}{2}\overline{\nu_\alpha^c}m_\alpha\nu_\alpha + \text{h.c.}$$

•
$$\mathscr{L}_{\phi,\text{int}} = \frac{y}{2} \phi \overline{\nu_s^c} \nu_s + \text{h.c.} \rightarrow \frac{y}{2} \phi (\cos^2 \theta \overline{\nu_s^c} \nu_s - \text{si})$$

- Scalar potential possibly relevant
- sterile neutrinos (e.g. vector instead of scalar)

• Particularly simple as only a scalar and Yukawa couplings are needed, no issues with SU(2) invariance

 $in(2\theta)\overline{\nu_{\alpha}}\nu_{s} + sin^{2}\theta\overline{\nu_{\alpha}}\nu_{\alpha} + h.c.$

• Phenomenology not necessarily restricted to specific model, but can arise generically for self-interacting

New interactions of sterile neutrinos

- $m_{\phi} > 1 \, {\rm GeV}$ (Johns and Fuller 1903.08296)
 - Interactions affect in-medium neutrino potential
 - Either no impact or runaway production

New interactions of sterile neutrinos

- $m_{\phi} > 1 \, {\rm GeV}$ (Johns and Fuller 1903.08296)
 - Interactions affect in-medium neutrino potential
 - Either no impact or runaway production
- $m_{\phi} \sim 100 \,\mathrm{keV}$, $y \lesssim 10^{-8}$ (Hansen and Vogl 1706.02707)
 - of sterile neutrino number density

• Thermalization of dark sector with number-changing interactions for ϕ (scalar potential!) leads to growth

• Viable for small window around $m_s = 4 \, \text{keV}$ (but Lyman- α very close) or with further lepton asymmetry

New interactions of sterile neutrinos

- $m_{\phi} > 1 \, {\rm GeV}$ (Johns and Fuller 1903.08296)
 - Interactions affect in-medium neutrino potential
 - Either no impact or runaway production
- $m_{\phi} \sim 100 \,\mathrm{keV}$, $y \lesssim 10^{-8}$ (Hansen and Vogl 1706.02707)
 - Thermalization of dark sector with number-changing interactions for ϕ (scalar potential!) leads to growth of sterile neutrino number density
 - Viable for small window around $m_s = 4 \, \text{keV}$ (but Lyman- α very close) or with further lepton asymmetry
- $m_{\phi} > 2m_s$, $y \gtrsim 10^{-6}$ (Bringmann, PFD et al. 2206.10630) \leftarrow this work
 - Viable due to exponential growth of initial abundance from Dodelson-Widrow mechanism! ullet
 - Allows for mixing angles much smaller than in Dodelson-Widrow scenario

New interactions of sterile neutrinos

- $m_{\phi} > 1 \, {\rm GeV}$ (Johns and Fuller 1903.08296)
 - Interactions affect in-medium neutrino potential
 - Either no impact or runaway production
- $m_{\phi} \sim 100 \,\mathrm{keV}$, $y \lesssim 10^{-8}$ (Hansen and Vogl 1706.02707)
 - Thermalization of dark sector with number-changing interactions for ϕ (scalar potential!) leads to growth of sterile neutrino number density
 - Viable for small window around $m_s = 4 \, \text{keV}$ (but Lyman- α very close) or with further lepton asymmetry
- $m_{\phi} > 2m_s$, $y \gtrsim 10^{-6}$ (Bringmann, PFD et al. 2206.10630) \leftarrow this work
 - Viable due to exponential growth of initial abundance from Dodelson-Widrow mechanism! ullet
 - Allows for mixing angles much smaller than in Dodelson-Widrow scenario
- Further discussion of viable m_{ϕ} (Dias Astros and Vogl 2307.15565) \leftarrow talk by María Dias

Exponential growth

	m_s	m_{ϕ}	$\sin^2(2\theta)$	y
BP1	$12 \mathrm{keV}$	$36 \mathrm{keV}$	2.5×10^{-13}	1.905×1

Exponential growth

	m_s	m_{ϕ}	$\sin^2(2\theta)$	y
BP1	$12 \mathrm{keV}$	$36 \mathrm{keV}$	2.5×10^{-13}	1.905×1

Exponential growth

	m_s	m_{ϕ}	$\sin^2(2\theta)$	y
BP1	$12 \mathrm{keV}$	$36\mathrm{keV}$	2.5×10^{-13}	1.905×1

Exponential growth Smaller $\theta \Rightarrow$ larger $y \Rightarrow$ additional processes

	m_s	m_{ϕ}	$\sin^2(2\theta)$	y
BP1	$12 \mathrm{keV}$	$36\mathrm{keV}$	2.5×10^{-13}	1.905×1
BP2	$20 \mathrm{keV}$	$60\mathrm{keV}$	3.0×10^{-15}	1.602×10^{-1}

Parameter space

Minimal sterile neutrino dark matter | Paul Frederik Depta | 12 September 2023

X-ray constraints from DM decays

Parameter space

Lyman- α forest constraints from suppression of smallscale structure:

- DM self-scatterings before kinetic decoupling \rightarrow structures below sound horizon r_{s} suppressed
- DM free-streaming after kinetic decoupling \rightarrow structures below free-streaming length λ_{fs} suppressed

X-ray constraints from DM decays

Parameter space

Lyman- α forest constraints from suppression of smallscale structure:

- DM self-scatterings before kinetic decoupling \rightarrow structures below sound horizon r_{s} suppressed
- DM free-streaming after kinetic decoupling \rightarrow structures below free-streaming length λ_{fs} suppressed

observations at late times

Conclusions

- Sterile neutrinos excellent DM candidate, but simplest realization excluded
- Many alternative production mechanisms proposed
- Self-interacting sterile neutrinos can have exponential growth of abundance
- DM production at mixing angles much smaller than in Dodelson-Widrow scenario
- Simplest allowed model for sterile neutrino DM production
- Much of parameter space is testable in the foreseeable future

Thank you

