New constraints on multiply-interacting ultra-heavy dark matter from the LUX-ZEPLIN (LZ) experiment Ryan Smith (UC Berkeley) TeVPA September 14, 2023

LUX-ZEPLIN

TeVPA 2023

See V. Kudryavtsev's presentation (Wed. 9:45)

Ryan Smith

Time [µs]

 LZ limit plots are truncated above 10 TeV - for masses much higher than m_{xe}, the recoil spectrum no longer depends on dark matter mass

$$E_r=rac{m_\chi^2 m_N v^2}{(m_\chi+m_N)^2}(1-\cos(heta))$$

 At high cross section (>10⁻³¹ cm²), DM signal no longer consists primarily of single scatters

- If dark matter is very heavy, it can penetrate the overburden and reach LZ even if scattering many times
- Saturated overburden scattering (SOS) for masses above ~10¹⁴ GeV, can probe arbitrarily high cross sections

[Phys. Rev. D 98, 083516 (2018)]

- Direct detection experiments like LZ sensitive to high cross sections unconstrained by astrophysical limits and passive detectors
- Various production scenarios for ultra-heavy dark matter have been proposed [see <u>Snowmass 2021 white</u> <u>paper</u>]

MIMP signals in LZ

 High cross section dark matter can produce multiple scatters in a single transit, arranged along a straight line for ultra-heavy candidates

Multiplicity

- S2s are better resolved than S1s in typical MIMP tracks
- At cross sections above 10⁻²⁹ cm², we no longer resolve S1s, and this search strategy loses sensitivity

Analysis

- LZ Science Run 1 (SR1) dataset -Dec 12 2021 to May 5 2022,
 60 day livetime after base data quality cuts
- Series of cuts tuned to accept simulated MIMP signals
- All SR1 events rejected by cuts

Cut	Survival Fraction
>1 S1, >1 S2	15.2%
Good S1	13.8%
Fiducial	2.7%
Colinearity	2.3%
Uniformity	0.7%
Velocity	0.1%
Region of Interest (ROI)	0%

Velocity reconstruction

• With multiple interactions, DM velocity can be measured for individual events!

- At high cross sections, merging of pulses causes mis-reconstruction of velocity
- Velocity cut was based on reconstructed distribution for simulated MIMPs with DM-nucleon cross section of 10⁻³⁰ cm²

TeVPA 2023

Signal ROI

- Expect scintillation and ionization signals to be positively correlated, with ratio characteristic of nuclear recoils
- Not relying on accurately reconstructing number of scatters - simple conservative cut on ratio of total S2 to total S1
- Backgrounds with S2 area much larger than expected from S1s - characteristic of accidental coincidence

A background event from mis-reconstruction

Cut acceptances

- Simulated MIMP signals are accepted with high efficiency, with multiple cuts showing zero loss
- At high cross sections, signal loss due to pulse merging effects is apparent

Results

- This search probes cross sections intermediate to LZ WIMP search and previous MIMP searches due to focus on resolved pulses
- Maximum mass sensitivity pushed to 3.9 · 10¹⁷ GeV

Moving forward

Ryan Smith

15

Scaling

• Typical interaction model may not be justified at high cross section [see <u>Phys. Rev. D 100,</u> <u>063013 (2019)</u>] $\sigma_{\chi A}^{(1)} = A^2 \frac{\mu_A^2}{\mu_{\chi V}^2} \sigma_{\chi N}^{(1)}.$

• Wide range of alternative models; limits calculated also for recoil cross section independent of A

Conclusions

- We are uncovering new regions of the high mass, high cross section dark matter parameter space with a dedicated multiple-scattering analysis
- The analysis demonstrates the rich information (such as event-level velocity reconstruction) available in the MIMP signal topology
- The multiple-scattering search is a complementary channel to the single scatter search. This unlocks new ways to investigate a possible signal.
- Publication is in progress!

LZ (LUX-ZEPLIN) Collaboration, 37 Institutions

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
 University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison

250 scientists, engineers, and technical staff

LZ Collaboration Meeting at SURF, June 2023

Science and Technology Facilities Council

Thanks to our sponsors and participating institutions!

https://lz.lbl.gov/

Detector parameters

Parameter	Value
$g_1^{ m gas}$	$0.0921\mathrm{phd/photon}$
g_1	$0.1136\mathrm{phd/photon}$
Effective gas extraction field	$8.42\mathrm{kV/cm}$
Single electron	$58.5\mathrm{phd}$
Extraction Efficiency	80.5%
g_2	$47.07\mathrm{phd/electron}$

$$egin{aligned} &\langle \mathrm{S1c}
angle = g_1 \langle n_{ph}
angle &\langle \mathrm{S2c}
angle = g_2 \langle n_e
angle \ &g_2 = \langle \mathrm{SE}
angle \cdot \epsilon_{ext}(\mathcal{E}_{gas}) = g_1^{gas} \cdot Y_e(\mathcal{E}_{gas},\Delta z_{gas}) \cdot \epsilon_{ext}(\mathcal{E}_{gas}) \end{aligned}$$