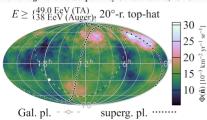
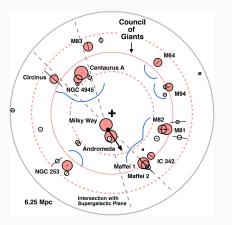


Ring closing on transient accelerators of ultra-high energy cosmic rays


Antonio Condorelli, Jonathan Biteau & **Olivier Deligny** Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay September 13, 2023

Observational constraints

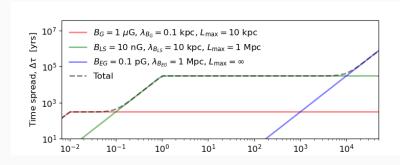
Pierre Auger Collaboration, PRL 125 (2020) 121106


Pierre Auger and Telescope Array Collaborations, ICRC 2023

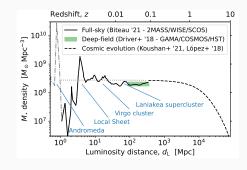
- Emissivity constrained by spectrum and composition data
- Correlation with starburst galaxies contributing only to ~10% of the flux. What about the remaining 90%?
- Starburst galaxies responsible for ~15% of the SFR for z < 2

SFR, Council of Giants and SBG correlation

ightharpoonup Assumption: SFR or M_{\star} as tracers of UHECR production rate



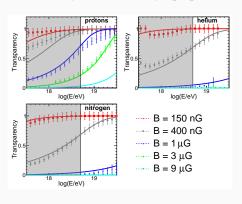
Transient sources?


Transient sources and magnetic-fields induced time spread

- Impact of B on UHECRs: deflections and time spread in arrivals
- Assuming small-angle scattering:

$$\frac{\Delta \tau}{4.4 \times 10^3 \text{ yr}} = \left(\frac{B}{10 \text{ nG}}\right)^2 \left(\frac{R}{10 \text{ EV}}\right)^{-1} \left(\frac{d}{1 \text{ Mpc}}\right)^2 \left(\frac{\lambda_B}{10 \text{ kpc}}\right)$$

UHECR-source model



- ◆ UHECR flux contribution of each foreground galaxy
 ∞ to its SFR or M_{*}
- Isotropic background from z = 0.08 to z = 2.5
- Best match of spectrum and composition data + arrival direction map

¹J. Biteau (2021) Astrophys. J. Suppl. 256

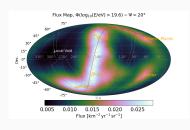
Propagation in galaxy clusters

Galaxy clusters: very opaque environments for UHECR nuclei:²

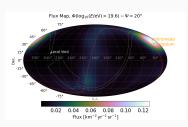
- Modelling of the environment under the assumption of self-similarity
- Propagation in the cluster environments
- Rigidity-dependent escape time much longer than age of clusters

²A. Condorelli et al., arXiv:2309.04380; D. Harari et al., JCAP 08 (2016) 010

Contribution of each galaxy in a transient scenario

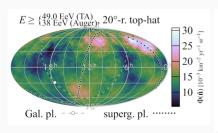

Stochastic number of bursts of each foreground galaxy:

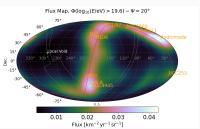
$$N = \Delta \tau \cdot k \cdot s$$

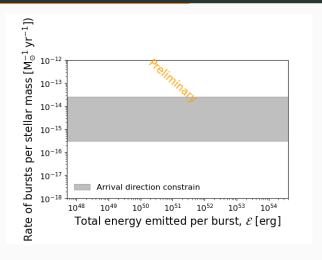

- s: tracer
- Δτ: time spread induced by magnetic fields
- k: parameter such as k · s is the the burst rate
- ightharpoonup N is randomized \longrightarrow 100 realizations \longrightarrow median map

Exploring the plausible range of k

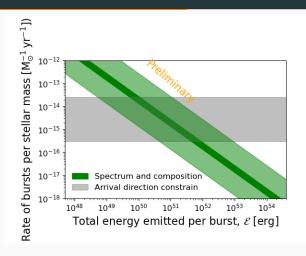
Scan over a range of k to reproduce the observed sky map

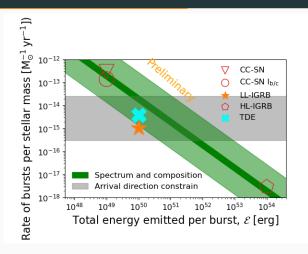


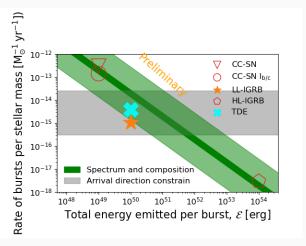

- Low value of k (3 · 10⁻¹⁷ M_{\odot}^{-1} yr⁻¹):
 - · Nearby sources filtered
 - Sky map dominated by sources at distances
 ≥ 10 Mpc


- ► High value of k(1 · 10⁻¹³ M_☉⁻¹ yr⁻¹):
 - Contribution from nearby sources
 - Sky map dominated by the Andromeda Galaxy

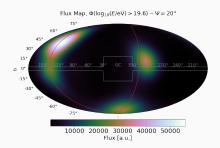
Best k



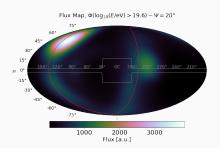

- **☞** Best value: $k = 1 \cdot 10^{-15} \text{ M}_{\odot}^{-1} \text{ yr}^{-1}$
- Possible range of k obtained within a range of Local Sheet magnetic fields
- **SBG** correlation (10% signal) indeed explained by transient events traced by SFR or M_{\star}


Burst rate constrained by sky maps

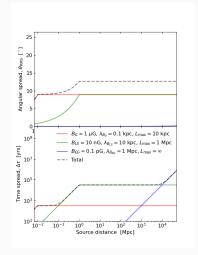
- Burst rate constrained by sky maps
- Energetic budget constrained by spectrum and composition data


- Burst rate constrained by sky maps
- Energetic budget constrained by spectrum and composition data
- Suitable source candidates: LL-IGRB and TDE

Thanks for your attention


BACK-UP

Including coherent deflections


- GMF model: JF12;
- Force-brutal backtracking accounting for (de)magnification effects
- Fraction of He from
 5 Mpc sources such as
 3% of He in total (up to
 10%, depending on
 hadronic interaction
 model, in the latest Auger
 report)

Including coherent deflections

- GMF model: JF12;
- Force-brutal backtracking accounting for (de)magnification effects (agreeing with Farrar-Sutherland JCAP 05 (2019) 004)
- · No Helium.

Magnetic fields and angular spread

$$\frac{\Delta\theta}{3.4^{\circ}} = \left(\frac{B}{10 \text{ nG}}\right) \left(\frac{R}{10 \text{ EV}}\right) \left(\frac{d}{1 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{10 \text{ kpc}}\right)^{1/2}$$

Chosen values of the magnetic fields

- Galactic magnetic field: 1 μ G (JF12), λ_c = 100 pc (JF12), L_{max} = 10 kpc (size fo the galaxy).
- Local Sheet magnetic field: largely under-constrained. From MHD simulations (Donnert et al. 2018) $B \simeq 2-10$ nG, $\lambda_c=10$ kpc (Donnert et al. 2018), $L_{max}=1$ Mpc (radius of the Local Group).

Chosen values of the magnetic fields

- Extra-galactic magnetic field: Upper limits on extragalactic magnetic fields are set to tens of pG, for magnetic fields of primordial origin that would affect CMB anisotropies (Jedamzik & Saveliev 2019).
- Lower limits at the fG level have also been derived from the non-observation in the GeV range of gamma-ray cascades from TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010; Ackermann et al. 2018)
- $\lambda_c = 1$ Mpc (Bray and Scaife, 2018)).

Best k