

First results from the WIMP dark matter search with the LZ experiment

Vitaly A. Kudryavtsev

University of Sheffield

for the LZ Collaboration

TeVPA and direct dark matter search

- Atmospheric Cherenkov telescopes: ~TeV.
- PeV neutrinos: ~10³ TeV.
- UHECR: up to $10^{20} \text{ eV} = 10^8 \text{ TeV}$.
- GR excess from the GC: \sim GeV -> 10⁻³ TeV.
- GR in MeV range: $\sim 10^{-6}$ TeV.
- Direct dark matter searches: 1-10 keV -> down to 10⁻⁹ TeV.

LZ (LUX-ZEPLIN) Collaboration 37 institutions; 250 scientists, engineers, and technicians

@lzdarkmatter https://lz.lbl.gov/

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Technology
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Laboratory
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
 - US UK Portugal Korea Australia

TeVPA, Napoli, 11-15 September 2023

Thanks to our sponsors and participating institutions!

US Department of Energy Office of Science

Science and Technology Facilities Council

Detection principle in LXe

- Choice of LXe target and dual-phase technology:
 - Xenon good scintillator
 - Dense → self-shielding and high mass within a limited volume.
 - Electric field partly prevents electron-ion recombination
 - primary scintillation S1
 - secondary electroluminescence in the gas S2
 - High atomic weight → A² enhancement of the crosssection for spin-independent interactions
- 3D imaging and fiducialisation
 - S1 S2 time delay,
 - pattern of S2 light.
- Good discrimination between electron recoils (ERs) and nuclear recoils (NRs) – more on this later.

LZ location

- LZ location: Sanford Underground Research Facility (SURF), South Dakota, USA.
- About 4850 feet underground; ~4300 m w. e.
- Muon flux is about 6×10^{-9} cm⁻² s⁻¹.

TeVPA, Napoli, 11-15 September 2023

LZ detector design

NIMA, 953, 163047 (2020)

TeVPA, Napoli, 11-15 September 2023

LZ realisation

TeVPA, Napoli, 11-15 September 2023

Example events in the LZ TPC

TpcHighGain ÷ Run 5529, Event 75402 4.0e+1 S1 • S2 • SE • MPE • SPE • Other amplitude [phd/ns] S2 3.0e+1 **S1** 2.0e+1 1.0e+1 0.0e+0 0.00 200.00 400.00 800.00 1000.00 1200.00 600.00 1400.00 time [µs]

- Can trigger on S1 (top).
- Or on a much larger S2 (bottom).

TeVPA, Napoli, 11-15 September 2023

Extensive calibration campaign

- Key principle of discrimination:
 - Difference between S2 pulses in ER and NR events for a fixed S1 pulse.
- CH_3T disperse source β s from tritium decay \rightarrow ERs (blue)
- DD generator neutrons → NRs (orange)

- Solid blue (red) lines: median of the ER (NR) simulated distributions.
- Dashed lines: 10 % and 90 % quantiles of the distributions.
- Thin grey lines: contours of constant electron-equivalent energy (keVee) and nuclear recoil energy (keVnr).
- Other beta, gamma, alpha and neutron calibration sources: ²²⁰Rn, ^{131m}Xe, ^{83m}Kr, AmLi ...

PRL, 131, 041002 (2023); special paper on calibration in preparation.

TeVPA, Napoli, 11-15 September 2023

Event selection and background suppression

- S1 pulse: 3-fold coincidence between 3 PMTs.
- Only single-scatter events. Events with multiple S2 pulses are removed (WIMP cannot scatter twice).
- Pulses in the TPC in coincidence with the outer detector (OD) or skin are removed (definitely a background).
- Select events in the fiducial volume (FV).
- Look at low energies (more on this later); select events in ROI: S1*c* < 80 phd.

Event selection (cuts)

- Start with the left plot. All single-scatter events before any other cut.
- Most events are outside the FV $(5.5 \pm 0.2 \text{ tonnes})$ right plot. This is expected from the background from detector components (mainly alphas and betas from the surfaces).
- Grey points: events passing all cuts except for FD.
- Blue circle: events failing OD tag veto.
- Red crosses: events failing LXe skin veto cut (mostly ¹²⁷Xe).
- Black points: events passing all cuts.

TeVPA, Napoli, 11-15 September 2023

Event selection (cuts)

- After fiducialisation left plot.
- Remove accidental coincidences right plot.
- Data: 335 events in 60 ± 1 days of live time and 5.5 tonne fiducial mass.
- Orange contours: 37 Ar at 1σ and 2σ .
- Pink dashed contours: signal from 30 GeV/ c^2 WIMPs 1 σ and 2 σ .
- No excess over expected background.

TeVPA, Napoli, 11-15 September 2023

Energy spectra

- Spectra of energy depositions in the LXe TPC: extended energy range left; ROI for WIMP search right.
- Dark blue: model (systematic) uncertainties.
- Light blue: model and statistical uncertainties.

Phys. Rev. D 108, 012010 (2023)

TeVPA, Napoli, 11-15 September 2023

Fit to the data

Source	Expected Events	Fit Result
β decays + Det ER	215 ± 36	222 ± 16
ν ER	27.1 ± 1.6	27.2 ± 1.6
¹²⁷ Xe	9.2 ± 0.8	9.3 ± 0.8
¹²⁴ Xe	5.0 ± 1.4	5.2 ± 1.4
¹³⁶ Xe	15.1 ± 2.4	15.2 ± 2.4
⁸ B CE _{\nu} NS	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
³⁷ Ar	[0, 288]	$52.5^{+9.6}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30 \text{ GeV}/c^2 \text{ WIMP}$	•••	$0.0^{+0.6}$
Total		333 ± 17

- Events from various sources in 60 days × 5.5 t exposure.
- Column 2: expectations with uncertainties; uncertainties are used to constrain the fit.
- Column 3: fit to the data.
- Measured: 335 events in the ROI.
- No excess over background expectation.

TeVPA, Napoli, 11-15 September 2023

Efficiency before and after analysis cuts

- Efficiencies after various cuts.
- 50% efficiency after cuts is achieved for 5.5 keVnr events.
- Input to the profile likelihood analysis together with the data and model.

TeVPA, Napoli, 11-15 September 2023

Results: SI limits

- The 90% confidence limit (solid black curve) on the spinindependent WIMP cross-section vs WIMP mass.
- Minimum exclusion on spinindependent WIMP-nucleon cross-section of 9.2 × 10⁻⁴⁸ cm² at 36 GeV.
- Dashed: median expected sensitivity.
- Green and yellow bands: 1σ and 2σ sensitivity bands.
- The grey dash-dotted line: limit before applying the power constraint.
- Some other limits are included (see also recent XENONnT result in PRL, 131, 041003 (2023)).

PRL, 131, 041002 (2023)

Vitaly Kudryavtsev

TeVPA, Napoli, 11-15 September 2023

Results: SD limits

- The 90% confidence limit (black curve) on spin-dependent WIMPneutron cross-section (Xe has two odd-neutron isotopes).
- Grey shaded area: uncertainty bands from xenon nuclear correction factors.
- Also limits on new physics with low-energy ERs: solar axions, solar neutrino magnetic moment etc, arXiv:2307.15753 [hep-ex].
- More to come: Dark matter in EFT, neutrinoless double-beta decay, rare decays of xenon isotopes etc.

PRL, 131, 041002 (2023)

TeVPA, Napoli, 11-15 September 2023

Summary

- LZ experiment has been built and is operating according to design specifications.
 - Excellent performance during engineering, calibration and the first science runs.
 - World-best limits on spin-independent and spin-dependent (WIMP-neutron) cross-sections for a large range of WIMP masses.
 - Limits on BSM physics with low-energy ERs: solar axions etc.
 - Currently the most-sensitive WIMP search experiment in the world for a large range of WIMP masses.
- Many more to come:
 - Dark matter in EFT,
 - 0vββ of ¹³⁶Xe,
 - Extension to low-mass WIMPs,
 - Rare decays in SM.
 - ... (see talk by R. Smith on MIUHDM/MIMP in LZ, Thursday, 2 pm, alpha room).
- Following our successful SR1 and subsequent extensive calibrations, LZ is now taking data in a 'discovery mode', exploring completely unexplored regions of parameter space towards first discovery of WIMPs.

TeVPA, Napoli, 11-15 September 2023

Summary

- Ellis et al. Eur. Phys. J. C (2023), 83: 246.
- Example spin-independent WIMP-nucleon cross-sections calculated for a set of CMSSM parameters.
- Solid curve and shaded areas: LZ limit (unconstrained) and sensitivity bands.
- Expected LZ sensitivity after 1000 days of live time: 1.4×10⁻⁴⁸ cm² for about 40 GeV/c² WIMP mass (PRD101, 052002 (2020)).
- Probing untested region of parameter space in CMSSM.

Vitaly Kudryavtsev

TeVPA, Napoli, 11-15 September 2023

Future of xenon technology

- Joint efforts from XENONnT, LZ and DARWIN to build a multi-purpose xenon-based observatory to search for rare events
 - WIMP search in a wide range of masses and models down to neutrino fog
 - Neutrinoless double-beta decay of ¹³⁶Xe
 - Other SM and BSM phenomena: rare decays in SM, axions etc.
- Use a well-tested dual-phase xenon technology and veto systems.
- 40-80 tonnes of active xenon.
- XLZD white paper: J. Phys. G 50, 013001 (2023).

