

direct dark matter searches: the latest results

Astroparticle physics with XENONnT

Astroparticles, depending on their nature and energy, can be experimentally probed by a large variety of detectors, placed in the sky, on the ground or underground.

Direct Dark Matter detection, given these particles elusive nature, demand very **low-background experiments**.

For **WIMP** searches, this condition is met when the detector:

- operates **underground**
- is shielded by active/passive **vetoes**
- (optional) is equipped with background removal systems

2 | 12

Going underground to directly detect WIMPs

Thanks to:

- LNGS rock **overburden** (3600 m.w.e),
- muon and neutron vetoes,
- online distillation and purification systems.

the **XENONNT** experiment is sensitive to **WIMP** dark matter candidates and other **new-physics channels.**

> XENONnT experiment / overburden 3600 m.w.e 1 muon per m² per hour

Laboratori Nazionali del Gran Sasso (LNGS) Assergi (AQ), Italy

Corno Grande | 2.912mt

Pizzo Intermesoli | 2.635mt

XENONnT underground infrastructures

Same XENONIT infrastructure in the LNGS underground facility with some important upgrades

Neutron veto:

- Hosted in the water Cherenkov muon veto
- Neutron capture on H
- SRO neutron tagging efficiency ~ 53%
- Soon improved by loading Gd

nT DAQ:

- Triggerless DAQ
- Subsystems linked mode

JINST 18 (2023)

Rn column:

- Continuous Rn distillation
- Lowest ²²²Rn bkg ever achieved: 1.8 µBq/kg

Eur. Phys. J. C 82, 1104 (2022)

Liquid Purification:

- Removes electronegative impurities (O₂ and H₂O)
- Average electron lifetime 1.5 ms
- Reduces S2 z dependences and improves S1 LCE

Eur. Phys. J. C 82, 860 (2022)

XENONnT detector working principle

- 5.9 t LXe instrumented with a cylindrical TPC:
 - drift field of 23 V/cm 0
 - r=66.4cm, h=150cm Ο
- **Detection** via prompt scintillation light (S1) and delayed ionization signal (**S2**)
- **Event position** reconstruction:
 - (x,y) from S2 top PMTs Ο pattern
 - z from drift time
- Particle discrimination in (cS1, cS2)

XENONnT TPC calibration

Particle discrimination in (cS1, cS2)

- ²²⁰Rn (²¹²Pb beta decay):
 - modeling of ER response
 - quality cuts validation
 - energy threshold evaluation
- ³⁷AR:
 - low energy response calibration
 - peak reconstruction

• AmBe:

- modeling of NR response
- neutron veto characterization
- ^{83m}Kr (not in the plot):
 - TPC response characterization
- Combined energy scale:
 E[keV] ∝ (cS1/g1+cS2/g2)
 where g1, g2 from calibration peaks

ZØV P∆

XENONnT WIMP searches - SR0

- WIMP searches with XENONnT SR0 background data: 95.1 days of live time
- Data selection acceptance ~80% in WIMP ROI:
 - Fiducial volume pre-cut to reduce surface/wall background: 4.18 t
 - Agreement between simulation and data driven acceptance curves

XENONnT WIMP searches - results

WIMP ROI backgrounds

- ER: dominated by ²¹⁴Pb from ²²²Rn
- **Surface/Wall**: ²¹⁰Pb from PTFE panels
- AC: randomly paired S1s and S2s

Results of SR0 blinded analysis

	Nominal	Best fit	
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16
CEvNS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4\substack{+0.9\\-0.8}$	0.32 ± 0.06
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total background	154	152 ± 12	$2.03_{-0.15}^{+0.17}$
WIMP		2.6	1.3
Observed		152	3

XENONnT WIMP searches - results

 No significant excess observed

 New upper limit with 90% CL on SI WIMP-nucleon interaction cross section limited at median sensitivity

ZØV P∆

New physics searches in Electron Recoil band

Not only WIMP searches: studies in ER band can **probe new physics** channels

- Lowest ER background ever achieved in a direct dark matter experiment.
- Limited by **second-order weak** processes (124Xe, 136Xe) for energies greater than ~35 keV

Results - updated new-physics limits

11 | 12

- **XENONNT** is currently taking a new run of background data (**SR1**).
- Thanks to the **radon removal system in LXe** mode the ²²²Rn contribution to the background budget has been **reduced by a factor greater than 2**.
- Expected increased neutron tagging efficiency in NV Gd-loaded phase
- Soon new improved results

Thank you for your attention!

BACKUP

2017 2013

XENONnT direct dark matter searches: the latest results

EV PA

- electron recoil search < 30 keV
- **285 events** observed, 232 ± 15 expected (3.3σ fluctuation)
- compatible with ³H contamination at 3.2 σ with concentration (6.2 ± 2.0) × 10–25 mol/mol
- compatible with beyond Styl (solar axions, enhanced neutrino magnetic moment, ALPs, dark photons ...)

Excluded by XENONnT results

Combined energy scale: (g1,g2) determination

- From monoenergetic calibration sources and activation peaks in csl, cs2
- To the **Doke plot**: determination of g1,g2
- The combined energy scale: E = W × (cS1/g1+cS2/g2)

