Status and prospects of SuperCDMS SNOLAB

Elías López Asamar

13th of September of 2023

Introduction

Direct detection experiments have strongly constrained the WIMP hypothesis, motivating the search for dark matter in regimes beyond the GeV scale

Sub-GeV dark matter: allowed in several models that explain the amount of DM in the universe by assuming new interactions (hidden sector freeze-out, freeze-in, etc)

Detector physics

Semiconductor monocrystals (Si, Ge) at cryogenic temperatures (~50 mK)

Effect of recoiling particle (atomic nucleus or electron) after DM interaction:

- Fraction of deposited energy produces electron-hole pairs (charge, N_q)
- Eventually, all deposited energy goes into athermal <u>phonons</u> (*E_P*): quanta of lattice vibrations, related to sound and temperature

Detector physics

<u>Neganov-Trofimov-Luke (NTL) effect</u>: if electric field applied, charge produces additional (athermal) phonons while drifting

Additional phonons from charge carriers

$$N_q = Y \frac{E_R}{\epsilon}$$

$$E_P = E_R + q_e V N_q = E_R (1 + Y \frac{q_e V}{\epsilon})$$

Two detector approaches:

- <u>IZIP</u>: measures both charge (N_q) and phonon energy (E_P) , to obtain recoil energy (E_R) and ionization yield $(Y) \Rightarrow \underline{\text{Discriminates between nuclear and electron recoil}}$
- <u>HV</u>: applies high voltage in order to measure amplified NTL phonons (indirect measurement of N_q), \Rightarrow <u>Effectively decreases the energy threshold</u>

Two detector approaches:

- <u>IZIP</u>: measures both charge (N_q) and phonon energy (E_P) , to obtain recoil energy (E_R) and ionization yield $(Y) \Rightarrow \underline{\text{Discriminates between nuclear and electron recoil}}$
- <u>HV</u>: applies high voltage in order to measure amplified NTL phonons (indirect measurement of N_q), \Rightarrow <u>Effectively decreases the energy threshold</u>

Monocrystalline semiconductor cylinders, <u>instrumented</u> on top and bottom surfaces in order to build a vertical electric field, and measure:

- Charge (iZIP detectors only), from current induced on electrodes due to drifting
- Phonon energy (both iZIP and HV detectors), using transition-edge sensors (TES)

Charge and phonon sensors arranged in channels to have position sensitivity

Monocrystalline semiconductor cylinders, <u>instrumented</u> on top and bottom surfaces in order to build a vertical electric field, and measure:

- Charge (iZIP detectors only), from current induced on electrodes due to drifting
- Phonon energy (both iZIP and HV detectors), using transition-edge sensors (TES)

Charge and phonon sensors arranged in channels to have position sensitivity

Monocrystalline semiconductor cylinders, <u>instrumented</u> on top and bottom surfaces in order to build a vertical electric field, and measure:

- Charge (iZIP detectors only), from current induced on electrodes due to drifting
- Phonon energy (both iZIP and HV detectors), using transition-edge sensors (TES)

Charge and phonon sensors arranged in channels to have position sensitivity

The SuperCDMS SNOLAB experiment

4 arrays (towers) of Si and Ge detectors (0.6 and 1.4 kg respectively)

Cryogenics: cryocooler+dilution refrigerator

Shielding: high-density polyethylene+Pb

Experiment site: SNOLAB, Canada (6000 m. w. e. overburden)

The SuperCDMS SNOLAB experiment

4 arrays (towers) of Si and Ge detectors (0.6 and 1.4 kg respectively)

Cryogenics: cryocooler+dilution refrigerator

Shielding: high-density polyethylene+Pb

Experiment site: SNOLAB, Canada (6000 m. w. e. overburden)

Current status

Base shielding completed

Dilution refrigerator already underground, reached 10 mK earlier this year 2 towers arrived at SNOLAB in May, other 2 expected later this year Planning to test first tower at CUTE in November, opportunity for early science Commissioning scheduled for late 2024

Current status

Base shielding completed

Dilution refrigerator already underground, reached 10 mK earlier this year 2 towers arrived at SNOLAB in May, other 2 expected later this year Planning to test first tower at CUTE in November, opportunity for early science Commissioning scheduled for late 2024

Projected sensitivity – nuclear recoils

SuperCDMS SNOLAB will be sensitive to dark matter down to ~400 MeV, well into the sub-GeV regime, and will approach the neutrino floor

Potential to further constrain the sub-GeV regime with future upgrades

Projected sensitivity – nuclear recoils

SuperCDMS SNOLAB will be sensitive to dark matter down to ~400 MeV, well into the sub-GeV regime, and will approach the neutrino floor

Potential to further constrain the sub-GeV regime with future upgrades

Projected sensitivity – electron recoils

SuperCDMS SNOLAB will be also competitive to search for:

- Dark photon dark matter
- Axion-like particle dark matter
- Light dark matter mediated by dark photons

https://arxiv.org/abs/2203.08463

Projected sensitivity – electron recoils

SuperCDMS SNOLAB will be also competitive to search for:

- Dark photon dark matter
- Axion-like particle dark matter
- · Light dark matter mediated by dark photons

https://arxiv.org/abs/2203.08463

Detector R&D

SuperCDMS is also conducting R&D to achieve sensitivity to lower energy recoils:

- <u>HVeV</u>: gram-scale Si, able to detect single ionization electrons through NTL effect
- Cryogenic photo-detector (<u>CDP</u>): 10 g Si, high-sensitivity phonon detector ($\sigma_{E} \sim 4 \text{ eV}$)

Conclusions

SuperCDMS SNOLAB aims to search for sub-GeV dark matter, using semiconductor targets instrumented with phonon and charge sensors

Two detector approaches: iZIP (discrimination between nuclear and electron recoils), HV (decreased energy threshold)

Base shielding completed, dilution refrigerator and 2 towers already in SNOLAB

Commissioning scheduled for late 2024

Will be sensitive to dark matter down to ~400 MeV, and competitive to search for dark photons, axion-like particles, etc

Conducting R&D to achieve sensitivity to lower energy recoils: HVeV, CPD

Backup slides

Detector physics

Semiconductor monocrystals (Si, Ge) at cryogenic temperatures (~50 mK)

Effect of recoiling particle (atomic nucleus or electron) after DM interaction:

- Fraction of deposited energy produces electron-hole pairs (charge, N_q)
- Eventually, all deposited energy goes into athermal <u>phonons</u> (*E_P*): quanta of lattice vibrations, related to sound and temperature

Individual phonon energy

Projected sensitivity – electron recoils

SuperCDMS SNOLAB will be also competitive to search for:

- Dark photon dark matter
- Axion-like particle dark matter
- Light dark matter mediated by dark photons

https://arxiv.org/abs/1512.08108

Figure 1. Missing energy loss, ΔL , normalized over a reference luminosity, $L_{\rm st}$, for different stellar systems. The plot includes only stars for which an analysis with confidence levels was provided: the three white dwarf variables G117-B15A [4], R548 [6] and PG 1351+489 [7]; an example from the central region of the WDLF ($M_{\rm Bol} \sim 9$) [8, 9]; red giants [11, 12]; and HB stars [13]. For RG and HB stars, the reference luminosity is taken to be the core average energy loss. The errors are derived from the 1 σ uncertainties provided in the original literature.