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Introduction

Direct detection experiments have strongly constrained the WIMP hypothesis,
motivating the search for dark matter in regimes beyond the GeV scale

Sub-GeV dark matter: allowed in several models that explain the amount of DM in the
universe by assuming new interactions (hidden sector freeze-out, freeze-in, etc)
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Detector physics

Semiconductor monocrystals (Si, Ge) at cryogenic temperatures (~50 mK)

Effect of recoiling particle (atomic nucleus or electron) after DM interaction:
« Fraction of deposited energy produces electron-hole pairs (charge, N,)

« Eventually, all deposited energy goes into athermal phonons (E;): quanta of lattice
vibrations, related to sound and temperature

lonization vield, quantifies fraction of

deposited energy producing charge

Depends on recoiling particle: ~1 for
electrons, < 0.3 for nuclei (< 10 keV)
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Detector physics

Neganov-Trofimov-Luke (NTL) effect: if electric field applied, charge produces additional
(athermal) phonons while drifting
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SuperCDMS detectors

Two detector approaches:
« IZIP: measures both charge (N,) and phonon energy (E;), to obtain recoil energy (Eg)
and ionization yield (Y) = Discriminates between nuclear and electron recoil

HV: applies high voltage in order to measure amplified NTL phonons (indirect
measurement of N,), = Effectively decreases the energy threshold
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SuperCDMS detectors

Two detector approaches:

« IZIP: measures both charge (N,) and phonon energy (E;), to obtain recoil energy (Eg)
and ionization yield (Y) = Discriminates between nuclear and electron recoil

* HV: applies high voltage in order to measure amplified NTL phonons (indirect
measurement of N,), = Effectively decreases the energy threshold
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SuperCDMS detectors

Monocrystalline semiconductor cylinders, instrumented on top and bottom surfaces in
order to build a vertical electric field, and measure:

* Charge (iZIP detectors only), from current induced on electrodes due to drifting
* Phonon energy (both iZIP and HV detectors), using transition-edge sensors (TES)

Charge and phonon sensors arranged in channels to have position sensitivity
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SuperCDMS detectors

Monocrystalline semiconductor cylinders, instrumented on top and bottom surfaces in
order to build a vertical electric field, and measure:
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The SuperCDMS SNOLAB experiment

4 arrays (towers) of Si and Ge detectors (0.6 and 1.4 kg respectively)
Cryogenics: cryocooler+dilution refrigerator

Shielding: high-density polyethylene+Pb

Experiment site: SNOLAB, Canada (6000 m. w. e. overburden)
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The SuperCDMS SNOLAB experiment

4 arrays (towers) of Si and Ge detectors (0.6 and 1.4 kg respectively)
Cryogenics: cryocooler+dilution refrigerator

Shielding: high-density polyethylene+Pb

Experiment site: SNOLAB, Canada (6000 m. w. e. overburden)

Dilution
Refrigerator

"' - ‘l-u-

( WL, @'““‘ \u.uu.mf“ {1 "“'i..“‘.'.v...'.._.. W hiiiiiiiig

Ly

Seismic Platform SNOBOX

11



Current status

Base shielding completed

Dilution refrigerator already underground, reached 10 mK earlier this year

2 towers arrived at SNOLAB in May, other 2 expected later this year

Planning to test first tower at CUTE in November, opportunity for early science

Commissioning scheduled for late 2024
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Projected sensitivity — nuclear recoils

SuperCDMS SNOLAB will be sensitive to dark matter down to ~400 MeV, well into the
sub-GeV regime, and will approach the neutrino floor

Potential to further constrain the sub-GeV regime with future upgrades
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Projected sensitivity — nuclear recoils

SuperCDMS SNOLAB will be sensitive to dark matter down to ~400 MeV, well into the

sub-GeV regime, and will approach the neutrino floor

Potential to further constrain the sub-GeV regime with future upgrades
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Projected sensitivity — electron recoils

SuperCDMS SNOLAB will be also competitive to search for:
* Dark photon dark matter

* Axion-like particle dark matter

* Light dark matter mediated by dark photons
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Projected sensitivity — electron recoils

SuperCDMS SNOLAB will be also competitive to search for:
* Dark photon dark matter
* Axion-like particle dark matter

* Light dark matter mediated by dark photons

—_

Dark Matter—electron @ [cm?

107

10—34.

— —i
S 9
[5] 95
[=3] [

10737}
10-38 L
10-39 |
10-40|
107411
1042

108

F(q) = 1 (heavy mediator)

10°
_102

_101 T

o

[

o

c

2

©

o

1]

U

[]

=

©

-

10 100
Dark Matter Mass [MeV/c?]

https://arxiv.org/abs/2203.08463

—
Y]

e [cm

a,

Dark Matter—electron

1 0—33

10-34|
107%
1 0-36 L
1097
1 0-38 L
10739
1 0—40 L
1041}
1 0-42 i

1%

F(q) = 1/¢* (light mediator)

10-8
1104
{10-5
11078

1 10 100

Dark Matter Mass [MeV/c?]

Dark Matter-electron @, [pb]

17


https://arxiv.org/abs/2203.08463

Detector R&D

SuperCDMS is also conducting R&D to achieve sensitivity to lower energy recoils:
* HVeV: gram-scale Si, able to detect single ionization electrons through NTL effect
» Cryogenic photo-detector (CDP): 10 g Si, high-sensitivity phonon detector (o ~ 4 €V)

DM exclusion limits from CPD
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.061801
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Conclusions

SuperCDMS SNOLAB aims to search for sub-GeV dark matter, using semiconductor
targets instrumented with phonon and charge sensors

Two detector approaches: iZIP (discrimination between nuclear and electron recoils),
HV (decreased energy threshold)

Base shielding completed, dilution refrigerator and 2 towers already in SNOLAB
Commissioning scheduled for late 2024

Will be sensitive to dark matter down to ~400 MeV, and competitive to search for dark
photons, axion-like particles, etc

Conducting R&D to achieve sensitivity to lower energy recoils: HVeV, CPD
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Detector physics

Semiconductor monocrystals (Si, Ge) at cryogenic temperatures (~50 mK)

Effect of recoiling particle (atomic nucleus or electron) after DM interaction:
« Fraction of deposited energy produces electron-hole pairs (charge, N,)

« Eventually, all deposited energy goes into athermal phonons (E;): quanta of lattice
vibrations, related to sound and temperature

Thermal phonons, due to the (very low)
temperature of the detector

Athermal phonons, produced
by recoiling nucleus
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Projected sensitivity — electron recoils

SuperCDMS SNOLAB will be also competitive to search for:
* Dark photon dark matter

* Axion-like particle dark matter
* Light dark matter mediated by dark photons
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Figure 1. Missing energy loss, AL, normalized over a reference luminosity, Ly, for different stellar
systems. The plot includes only stars for which an analysis with confidence levels was provided: the
three white dwarf variables G117-B15A [4], R548 [6] and PG 13514489 [7]; an example from the
central region of the WDLF (Mgo ~ 9) [8, 9]; red giants [11, 12]; and HB stars [13]. For RG and
HB stars, the reference luminosity is taken to be the core average energy loss. The errors are derived
from the 1o uncertainties provided in the original literature.
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