
Mineral Detection of Dark Matter

Minerals such as olivine could hold evidence of long-ago collisions between
atomic nuclei and dark matter (Olena Shmahalo/Quanta Magazine).
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Dark matter searches in mineral detectors

Trade large target mass for long exposure time

Figure: LUX-ZEPLIN (LZ) Collaboration /
SLAC National Accelerator Laboratory

Figure: Price+Walker ’63
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Dark matter searches in mineral detectors

Mineral detectors can look for signals “averaged” over
geological timescales or for time-varying signals
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Tracks in ancient minerals Solid state track detectors

Modern TEM allows for accurate characterization of tracks
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Tracks in ancient minerals Solid state track detectors

Integrate stopping power to estimate track length
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Tracks in ancient minerals Problematic backgrounds

Cosmogenic backgrounds suppressed in deep boreholes

Figure: ∼ 2Gyr old Halite cores from
∼ 3km, as discussed in Blättler+ ’18

Depth Neutron Flux
2 km 106/cm2/Gyr
5 km 102/cm2/Gyr
6 km 10/cm2/Gyr
50 m 70/cm2/yr
100 m 30/cm2/yr
500 m 2/cm2/yr

Need minerals with low 238U

Marine evaporites with
C 238 >∼ 0.01 ppb

Ultra-basic rocks from
mantle, C 238 >∼ 0.1 ppb
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Tracks in ancient minerals Problematic backgrounds

Fast neutrons from SF and (α, n) interactions

SF yields ∼ 2 neutrons with ∼MeV

Each neutron will scatter elastically
10-1000 times before moderating

(α, n) rate low, many decay α’s

Heavy targets better for (α, n) and
bad for neutron moderation, need H
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Projected sensitivity of mineral detectors MW halo signal constant in time

Use track length spectra to pick out WIMP signal
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Projected sensitivity of mineral detectors MW halo signal constant in time

Read-out threshold vs exposure
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Projected sensitivity of mineral detectors Measure time-varying signals

Dark disk transit every ∼ 45Myr
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Projected sensitivity of mineral detectors Measure time-varying signals

Multiple detectors with ages t = 20, 40, 60, 80, 100Myr

100 101 102 103

mdisk
χ [GeV]

10−44

10−43

10−42

10−41

10−40
σ

S
I;

d
is

k
p

Σ
d

is
k

[c
m

2
M
�
/p

c2
]

Fiducial

No age constraint

No constraints

1 sample

Systematic uncertainties ∆t = 5% ∆M = 0.1% ∆C = 10% ∆Φ = 100%
Patrick Stengel (INFN Ferrara) TeVPA 2023 September 14, 2023 11 / 12



Summary and outlook

Mineral detectors could probe rare and/or previous events

Look for DM and astrophysical ν’s

WIMP DM (2106.06559),
substructure (2107.02812),
composite DM (2105.06473)

Measure solar (2102.01755),
galactic CC SN (1906.05800),
atmospheric (2004.08394) ν’s

Feasibility of mineral detectors

Need efficient reconstruction
of nuclear recoil tracks

Need model of geological history

Radiopure samples from depth

Find a way to handle the data
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MDνDM community

Groups across Europe, North
America and Japan

Astroparticle theorists,
experimentalists, geologists,
and materials scientists

Next MDνDM workshop in
Washington DC January 2024

Check out our whitepaper!

History of mineral detectors

Review of scientific potential
for particle physics, reactor
neutrinos and geoscience

Summary of active and
planned experimental efforts
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Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different xT

HIBM+pulsed laser could read
out 10mg with nm resolution

SAXs at a synchrotron could
resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ ’12, SAXs nanoporous glass Holler+ ’14
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Mineral detectors look for damage from recoiling nuclei

Track length from stopping power
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Radiogenic backgrounds from 238U contamination

238U
α−→ 234Th

β−

−→ 234mPa
β−

−→ 234U
α−→ 230Th

α−→ 226Ra
α−→ 222Rn

α−→ . . . −→ 206Pb

Nucleus Decay mode T1/2

238U
α 4.468× 109 yr
SF 8.2× 1015 yr

234Th β− 24.10 d

234mPa
β− (99.84%)

1.159min
IT (0.16%)

234Pa β− 6.70 d
234U α 2.455× 105 yr

“1α” events difficult to reject
without additional decays

Reject ∼ 10µm α tracks

Without α tracks, filter
out monoenergetic 234Th
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Quick aside on data analysis and α-recoil background

VOLUME 74, NUMBER 21 PH YS ICAL REVIEW LETTERS 22 MAY 1995

Limits on Dark Matter Using Ancient Mica

D. P. Snowden-Ifft, * E.S. Freeman, and P. B. Price*
Physics Department, University of California at Berkeley, Berkeley, California 94720

(Received 20 September 1994)
The combination of the track etching method and atomic force microscopy allows us to search for

weakly interacting massive particles (WIMPs) in our Galaxy. A survey of 80720 p,m of 0.5 Gyr old
muscovite mica found no evidence of WIMP-recoil tracks. This enables us to set limits on WIMPs
which are about an order of magnitude weaker than the best spin-dependent WIMP limits. Unlike other
detectors, however, the mica method is, at present, not background limited. We argue that a background
may not appear until we have pushed our current limits down by several orders of magnitude.

PACS nombers: 95.35.+d, 14.80.Ly, 29.40.Ym, 61.72.Ff

Much research is being devoted to the questions of the
nature and detectability of the dark matter that comprises
more than 90% of the mass of the Universe [1]. One
of the most promising candidates is a weakly interact-
ing massive particle (WIMP) which is being sought with
instruments capable of detecting the -keV/amu recoil-
ing ions which would be produced in elastic collisions
between WIMPs and nuclei [1]. The best limits on the
mass and scattering cross section of WIMPs trapped in
the Galactic halo result from the use of natural Ge, NaI,
and CaF detectors [2]. These limits, however, fall short,
by several orders of magnitude, of ruling out one of the
favored WIMP candidates, the neutralino [3]. We show
here that the natural mica crystals, with an integration
time of -10 yr, can record and store the tracks of re-
coil nuclei struck by WIMPs, and that these tracks can be
measured with an atomic force microscope (AFM). Our
approach is an extension of the etching method for study-
ing ancient tracks in minerals [4,5]. With it, we report
a new limit that is about an order of magnitude weaker
than the best spin-dependent limits from NaI and CaF de-
tectors, but show that we have the potential to push these
limits down by several orders of magnitude.
As with the Ge, NaI, and CaF detectors, mica serves

both as the target and as the detector. Muscovite mica
is primarily composed of 'H (I = 2), '60 (I = 0), 27A1
(I = 2), Si (I = 0), and K (I = 2). The range of one
of these nuclei with a typical recoil energy of -keV/amu
is only a few hundred angstroms [6] and the etched depth
is even smaller. Although such etched tracks cannot
be studied with an optical microscope, we have shown
that their dimensions can be accurately measured with an
AFM [7]. As shown in Fig. 1, the technique is to cleave
open a mica crystal, etch the freshly exposed surfaces,
and use an AFM to scan and measure the tracks crossing
the cleavage plane. For each area scanned (typically
40 p.m X 40 p,m) a 256 x 256 grid of heights is obtained
and fitted line by line (to remove the effect of the piezo
motion on the heights) with a fourth order polynomial
using a robust fitting algorithm [8]. New, fiattened heights
are calculated from the difference between the old height

(a) WIMP

(b)

FIG. 1. An illustration of the etching technique. (a) If WIMPs
exist they would cause the constituent atoms of muscovite mica,
mainly ' 0, Al, Si, and K, to recoil across a cleavage
plane. (b) When both halves of the cleavage plane are etched
matching pits will appear. The illustration also shows the
development of n-recoil tracks and that these tracks will have
longer summed depths than WIMP-recoil tracks.

and the fit. All contiguous pixels with depths below 20 A
are then grouped into clusters. Clusters with three or more
pixels are then further analyzed. Clusters passing this
20 A., 3 pixel cut are shown in Fig. 2 with the height of the
deepest pixel in the cluster displayed alongside. The xy
location of this pixel is taken to be the location of the
recoiling ion and its depth is taken to be the depth of the
etched pit.
An example of a scan of one surface of ancient mica

etched for 1 h in room temperature 49% hydrofluoric acid

0031-9007/95/74(21)/4133(4)$06. 00 1995 The American Physical Society 4133

15 nm resolution of 100 g sample
⇒ 1019 mostly empty voxels

1 Gyr old with C 238 = 0.01 ppb
⇒ 1013 voxels for α-recoil tracks
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Spin- and velocity-independent WIMP-nucleus scattering

Rate per unit time per unit mass

dR

dER
=

nX
2

σSI
Xp

µ2
Xp

A2F (q)2η(vq)

Scattering kinematics ⇒ event rate

Account for finite size of nucleus

Convolute with WIMP flux

Write cross section in terms of
WIMP-nucleon interaction
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Scattering cross sections ⇒ scattering rates

d2σ
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Differential cross section

δ-function imposes kinematics

σ0 is velocity and momentum
independent cross section for
scattering off pointlike nucleus

F (q) ≃ 9 [sin(qR)− qR cos(qR)]2

(qR)6

Differential scattering rate

Rate per unit time per unit
detector mass for all nuclei

Convolute cross section with
astrophysical WIMP flux

σSI
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Velocity distribution in the Standard Halo Model (SHM)

Integrate Radon transform

∫
f̂ (vq, q̂)dΩq = 2πη(vq)

Mean inverse speed

η(vq) =

∫
v>vq

f (v)
v

d3v

Maxwellian in halo frame

f̃ (v) ∼
(

3

2πσ2
v

)3/2

e−3v2/2σ2
V

Figure: 1209.3339
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Conventional direct detection searches for WIMPs

Figure: LUX-ZEPLIN (LZ) Collaboration /
SLAC National Accelerator Laboratory

Figure: Event rate for mX = 100GeV
and σSI

Xp = 10−45 cm2 (solid),
mX → 25GeV (dashed) and
F (q) → 1 (dotted), 1509.08767
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Different ways to look for DM-induced nuclear recoils

Figure: 1509.08767
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Current limits on σSI
Xp and astrophysical uncertainties
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Multiple nuclei and large ϵ allow for optimal ∆mX/mX
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Nuclear recoil spectrum depends on neutrino energy

dR

dER
=

1

mT

∫
dEν

dσ

dER

dϕ

dEν

Figure: COHERENT, 1803.09183

Quasi-elastic for Eν ≳ 100MeV

Resonant π production at Eν ∼GeV

Deep inelastic for Eν ≳ 10GeV

Figure: Inclusive CC σνN , 1305.7513
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Solar ν’s produced in fusion chains from H to He

Figure: Today’s flux at Borexino
(Nature, 2018) and time dependence
of GS metallicity model, 2102.01755
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Galactic contribution to ν flux over geological timescales
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= Ṅgal
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Figure: Cosmic CC SNR, 1403.0007

Only ∼ 2 SN 1987A events/century

Measure galactic CC SN rate

Traces star formation history
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Atmospheric ν’s originating from CR interactions
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Figure: ECR to leptons, 1806.04140
Figure: FLUKA simulation of νµ flux at
SuperK for solar max, hep-ph/0207035
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Recoil spectra from atmospheric ν’s incident on NaCl(P)
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Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ ’76
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