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We all know about Dark Matter...

The existence of a mysterious, non-luminous type of matter known as dark matter (DM), is well established.

Astrophysical and cosmological observations show that DM makes up 27 % of the total energy density of the Universe, and
IS approximately five times more abundant than the ordinary matter component comprised of Standard Model particles.
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QUEST — DMC Ecosystem
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QUEST-DMC Programme

The QUEST-DMC programme will attempt to experimentally answer Beyond the
Standard Model Physics (BSM) questions which remain a mystery...

Work Package WP 1 Work Package WP 2

What is the nature of Dark Matter? How did the early universe evolve?

- Search for spin-dependent dark matter - lest nucleation theory of phase
interactions, with world-leading sensitivity transitions in the quantum vacuum of the
to a range of theoretically-motivated dark early universe, which critically informs

matter candidates in the sub-GeV mass predictions of gravitational wave
range. production.




QUEST-DMC will probe relatively unexplored
parameter space...
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The General Concept of QUEST-DMC
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Phase diagram of SHe

Helium-3 Target
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- 4He (99.9999%) far more abundant than femperature (K)
“He (0.0001%) 3He nucleus has 2 protons and just 1 neutron.
- Different physical properties related to - Spin 1/2 3He fermion; superfluidity from Cooper
difference in net spin... nairs of 3He atoms.

- B-phase at ~ 100 pK.

- Small superfluid gap ~A 10-7 eV between
Cooper pairs and quasiparticles (QPs), i.e.,

interactions! thermal excitations.

both sSpin- mdependent AND spin- dependent




Energy Deposition in Superfluid SHe

Scattering event between WIMP and 3He nucleus Nuclear Recoil
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Bolometry in 3SHe with Vibrating Nanowire Detectors

160 -

Nanowire In 3He box subjected to B field
and driven by AC current oscillates at

frequency, .

Nanowire experiences damping force due
to interactions between wire and QPs.
- Enhanced by Andreev reflections.

Measure induced voltage: I(w) — V(?).

—nergy from variation of resonance width:
AQ = a(T,, P)A(AS).

- Highly-dependent on pressure and
temperature.

Readout using lock-in amplifier or SQUID
(more details in back-up).
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Bolometry In 2He with Vibrating Nanowire Detectors
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Photon Sensing in QUEST-DMC

Currently exploring Silicon Photomultiplier (SIPM)
technology as an option for photon sensing in QUEST-
DMC.

SIPMs boast high guantum efficiency and excellent single-
photon resolution.

Successful test of SIPM feasibility at 4 K
- FBK NUV LF SIPMs: Ferri, A, et al. "Performance of
FBK low-afterpulse NUV silicon photomultipliers for PE

Amplitude

application." Journal of Instrumentation 11.03 (2016):
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Background Model
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Detector Response Model

Any uncertainty on the energy measurement has a

direct impact on the energy threshold achievable by | - conv. readout = shot noise
the deteCtOr. 103 I A w— S(uid readout = QP fluctuations ‘
1. QP production fluctuations. .
2. Readout: lock-in (conventional) vs SQUID. g 101k )
O
>
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Nuclear Recoil Energy Thresholds for
a 400nm diameter wire at 0.12 T/Tc.
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can be statistically determined to be
non-zero at 95% C.L.
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Dark Matter Sensitivity Projection

Spin-dependent sensitivity projection for: 6 month run; 50% duty cycle; 5 x 0.3 cm?3 3He cells

(0.1 g/cm3).
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Summary and Outlook

QUEST-DMC is a superfluid SHe bolometer instrumented with vibrating nanowire detectors that aims
to set world-leading sensitivity to GeV and sub-GeV mass dark matter with ~eV scale energy threshold.

High resolution quantum readout (SQUID) is being developed in order to improve energy threshold by
at least an order of magnitude compared to conventional readout (lock-in amplifier) - has currently been

tested at 4 K.

Simulation and analysis tools in place (Geant4, Profile Likelihood Ratio statistical analysis code, etc).

Current sensitivity ~10-36¢ cm?2 at 1 GeV/c? with a 0.71 eV threshold (SQUID readout).

Work In Progress:
- Develop energy calibration of the bolometer.
- Demonstrate SQUID readout at ~uK temperatures.
- Develop and implement a photon detector to a) detect scintillation light from events above ionisation

energy, or b) to act as a cosmic veto for events below ionisation energy.

Paper on arXiv in coming weeks- watch this space!
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Refrigerator at Lancaster

o reach the supertluid phase, SHe has to be
cooled to sub-mK temperatures, and QUEST-
DMC intends to operate at sub-100 pK
temperatures.

This will be achieved with the use of an advanced Cryostat
refrigerator based at Lancaster University.

Cool-down system consists of three stages:
- Liquid nitrogen and 4He bath.

- S3He/4He dilution refrigerator.
- Nuclear demagnetisation refrigerator.

| Ml 80uK
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Cryostat & Wet Dilution Refrigerator

SHe gas cooled in first stage through liquid nitrogen (77 K), liquid 4He bath (4.2 K), and

pressurised liguid 4He bath known as the 1K “pot”.
- Liquid 3He achieved at 1.6 K

Next part of cool-down stage is wet dilution refrigerator:

- 4He still

- Heat exchangers

- 4He/BHe mixing chamber: cooling is based on 3He requiring heat when pumped into the
dilute phase from concentrated phase, which provides cooling in the environment this

happens in.
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Nuclear Demagnetisation Cooling

Adiabatic demagnetisation of a magnetic material can cause cooling in the material and
systems in thermal contact with it.

Coolant material is Copper, Cu (Nuclear spin of 3/2).

In presence of B field, nuclear energy levels split into four via the Zeeman effect.
- At high temperatures energy levels equally populated.
- As temperature decreases, lowest energy level becomes energetically favourable,
holding a high population of atoms.
- B field reduced, raises energy of Cu nuclel whilst maintaining constant entropy -
results in cooling of nuclear temperature.
- Gonduction electrons in the Cu lattice provide the necessary thermal link to SHe via
lattice phonons and the atomic nuclel.
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Nanowire Readout Methods

Vibrating nanowire can be read out via...

L ock-in amplifier compares input signal V (¥)

(amplitude, phase) to a reference signal V (1) to
extract signal from noisy background.

1:100 Transformer used to amplify signal.

wire’s signal

resonating frequency

input signal V_(t)

lock-In
— amplifier

amplitude

reference signal V, (t)

Superconducing QUantum

Interference Device

SQUID is a magnetometer sensitive to ~10-14 T, order of
magnitude less than the brain.

Magnetic field

Converts magnetic flux into voltage. A

SQUID readout by lock-in amplifier. ¢, seonaueer
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Nanowire Readout using a SQUID

DC SQUID: Superconducting loop with two Josephson junctions, constantly biased.
- Without external B field, input current splits into two lbranches equally.
- If small external magnetic field is applied, screening current circulates the loop.
- Flux enclosed in superconducting loop must be an integer number of flux quanta; current changes direction periodically every time

flux increases by additional half-integer multiple of magnetic flux quantum @,,.

- Count periodic-®, oscillations of the voltage to measure flux change.
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The resonator is driven inductively by drive current I, via
coupling inductance M,, applying voltage excitation V..

z ;S@Af/ﬂlf + 4kpT RAf + kpTIB*/m

wire with impedance Z(w), contact resistance R and SQUID-
readout input coil L;. Noise sources are represented by their
equivalent voltage V..

SQUID current sensor detects current I; flowing through the v \/ |
‘RMS = ‘
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