General Dark Matter Electron Interactions in Graphene

R. Catena, T. Emken, M. Matas, N. Spaldin, E. Urdshals: 2303.15497 & 2303.15509

Einar Urdshals, 14. Sep 2023

The Dark Matter Wind

Detecting a Daily Modulation

Motivation

- Electron recoils are sensitive to dark matter (DM) masses $\gtrsim 1 \,\text{MeV}$
- Need to discriminate between DM events and background
- Graphene-like targets can produce a strong daily modulation, a smoking gun signal of DM

DM Induced Electron Ejections from Graphene

•
$$R \propto \int f_{\chi}(\mathbf{v}, t) R_{\text{free}}(\mathbf{v}, \mathbf{q}, \mathbf{k}') \left| \psi(\boldsymbol{\ell}, E_e) \right|^2$$

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15497

- $f_{\chi}(\mathbf{v}, t)$ is the DM velocity distribution
- R_{free} is the free particle response function and depends on the physics of free particles
- $\left|\psi(\boldsymbol{\ell}, E_e)\right|^2$ contains all the material physics

DM Velocity Distribution

6

• Seen from the lab on Earth the DM velocity distribution is anisotropic and time dependent

•
$$f_{\chi}(\mathbf{v}, t) \propto \exp\left[-\frac{(\mathbf{v} + \mathbf{v}_e(t))^2}{v_0^2}\right] \times \Theta\left(v_{\text{esc}} - |\mathbf{v} + \mathbf{v}_e(t)|\right)$$

2303.15497 & 2303.15509

Free Particle Response Function

- *R*_{free} is built from non-relativistic effective operators, allows covering arbitrary spin 0 and 1/2 DM models.
- Depends on the physics of the free particles, i.e. the DM particle and the final state electron

$$\begin{array}{ll} \mathcal{O}_{1} = 1\!\!1_{\chi e} & \mathcal{O}_{9} = i\mathbf{S}_{\chi} \cdot \left(\mathbf{S}_{e} \times \frac{\mathbf{q}}{m_{e}}\right) \\ \mathcal{O}_{3} = i\mathbf{S}_{e} \cdot \left(\frac{\mathbf{q}}{m_{e}} \times \mathbf{v}_{\mathrm{el}}^{\perp}\right) & \mathcal{O}_{10} = i\mathbf{S}_{e} \cdot \frac{\mathbf{q}}{m_{e}} \\ \mathcal{O}_{4} = \mathbf{S}_{\chi} \cdot \mathbf{S}_{e} & \mathcal{O}_{11} = i\mathbf{S}_{\chi} \cdot \frac{\mathbf{q}}{m_{e}} \\ \mathcal{O}_{5} = i\mathbf{S}_{\chi} \cdot \left(\frac{\mathbf{q}}{m_{e}} \times \mathbf{v}_{\mathrm{el}}^{\perp}\right) & \mathcal{O}_{12} = \mathbf{S}_{\chi} \cdot \left(\mathbf{S}_{e} \times \mathbf{v}_{\mathrm{el}}^{\perp}\right) \\ \mathcal{O}_{6} = \left(\mathbf{S}_{\chi} \cdot \frac{\mathbf{q}}{m_{e}}\right) \left(\mathbf{S}_{e} \cdot \frac{\mathbf{q}}{m_{e}}\right) & \mathcal{O}_{13} = i\left(\mathbf{S}_{\chi} \cdot \mathbf{v}_{\mathrm{el}}^{\perp}\right) \left(\mathbf{S}_{e} \cdot \frac{\mathbf{q}}{m_{e}}\right) \\ \mathcal{O}_{7} = \mathbf{S}_{e} \cdot \mathbf{v}_{\mathrm{el}}^{\perp} & \mathcal{O}_{14} = i\left(\mathbf{S}_{\chi} \cdot \frac{\mathbf{q}}{m_{e}}\right) \left(\mathbf{S}_{e} \cdot \mathbf{v}_{\mathrm{el}}^{\perp}\right) \\ \mathcal{O}_{8} = \mathbf{S}_{\chi} \cdot \mathbf{v}_{\mathrm{el}}^{\perp} & \mathcal{O}_{15} = i\mathcal{O}_{11}\left[\left(\mathbf{S}_{e} \times \mathbf{v}_{\mathrm{el}}^{\perp}\right) \cdot \frac{\mathbf{q}}{m_{e}}\right) \end{array}$$

Modelling Graphene

Tight Binding Approximation

- Approximation based on analytic atomic wave functions
- Not self consistent
- Accurate near the nucleus
- Computationally cheap
- Semi-analytic, not a black box

Density Functional Theory

- Works by finding the electron density that minimises the energy of the system
- Self consistent from first principles
- Can not treat the electron wave-function close to the nucleus
- Computationally expensive

Momentum Distribution in Graphene

Tight Binding Approximation

Density Functional Theory

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15497

Total Rate of Ejected Electrons

Time Averaged Rate

Daily Modulation

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15497

We recommend using DFT, and all rates will from now be DFTobtained

Statistical Tests

Establishing Daily Modulation

- Divide the data set in two parts, *n*₊ and *n*_
- No modulation $\implies E[n_+] = E[n_-]$
- Wish to reject the hypothesis that n_+ and n_- are drawn from the same distribution

Excluding Parameter Space

• Exclude DM unlikely to produce $n_+ + n_-$ or fewer events

Specific Detector Setups

Fixed Graphene

Moving Graphene

2303.15497 & 2303.15509

Fixed Carbon NanoTubes (CNTs)

Moving Carbon NanoTubes (CNTs)

Moving CNTs

Corresponds to dark photon model with a heavy mediator 10 g year exposure

Corresponds to dark photon model with a light mediator

Anapole Interaction

 $\mathcal{O}_3 \propto \mathbf{q} \times \mathbf{v}$

10 g year exposure

 $L_{\text{Anapole}} = \frac{g}{2\Lambda^2} \,\bar{\chi} \gamma^{\mu} \gamma^5 \chi \,\partial^{\nu} F_{\mu\nu}$

Electric Dipole Interaction

Magnetic Dipole Interaction

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15509

 $L_{\text{Electric dipole}} = \frac{g}{\Lambda} i \bar{\chi} \sigma^{\mu\nu} \gamma^5 \chi F_{\mu\nu} \qquad 10 \text{ g year exposure} \qquad L_{\text{Magnetic dipole}} = \frac{g}{\Lambda} \bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu}$

2303.15497 & 2303.15509

\mathcal{O}_1 Contact Interaction

\mathcal{O}_1 Long Range Interaction

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15509

Corresponds to dark photon model
with a heavy mediator10 g year exposureCorresponds to dark photon model
with a light mediator

\mathcal{O}_3 Contact Interaction

Anapole Interaction

 $\mathcal{O}_3 \propto \mathbf{q} \times \mathbf{v}$ 10 g year exposure $L_{\text{Anapole}} = \frac{g}{2\Lambda^2} \,\bar{\chi} \gamma^{\mu} \gamma^5 \chi \,\partial^{\nu} F_{\mu\nu}$

Electric Dipole Interaction

Magnetic Dipole Interaction

 $L_{\text{Electric dipole}} = \frac{g}{\Lambda} i \bar{\chi} \sigma^{\mu\nu} \gamma^5 \chi F_{\mu\nu} \qquad 10 \,\text{g year exposure} \qquad L_{\text{Magnetic dipole}} = \frac{g}{\Lambda} \,\bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu}$

Summary

- Experiments based on graphene and CNTs are suitable to produce a smoking gun signal of DM.
- The relative performance of the experimental setups depends on the form of the DM electron interaction. Need to consider non-standard interactions.
- For more details, see our papers 2303.15497 & 2303.15509

Backup Slides

Electron Density

Tight Binding Approximation

Density Functional Theory

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15497

Modelling Graphene

Momentum Density

Band Structure

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15497

Daily Modulation in Total Ejection Rates

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15497

Daily Modulation in Observed Events

Fixed Graphene

Fixed CNTs

$$L_{\text{Anapole}} = \frac{g}{2\Lambda^2} \,\bar{\chi} \gamma^{\mu} \gamma^5 \chi \,\partial^{\nu} F_{\mu\nu}$$

$$L_{\text{Magnetic dipole}} = \frac{g}{\Lambda} \, \bar{\chi} \sigma^{\mu\nu} \chi \, F_{\mu\nu}$$

$$L_{\text{Electric dipole}} = \frac{g}{\Lambda} i \bar{\chi} \sigma^{\mu\nu} \gamma^5 \chi F_{\mu\nu}$$

$$\mathcal{O}_3 \propto \mathbf{q} \times \mathbf{v}$$

Scattering Directions Fixed Sheets

 $\mathcal{O}_3 \propto \mathbf{v} \times \mathbf{q}$, contact type interaction, $m_{\chi} = 5 \,\mathrm{MeV}$

Scattering Directions Fixed Sheets

Magnetic Dipole Type Interaction, $m_{\gamma} = 5 \text{ MeV}$

Scattering Directions Fixed CNTs

 $\mathcal{O}_3 \propto \mathbf{v} \times \mathbf{q}$, contact type interaction, $m_{\gamma} = 5 \,\mathrm{MeV}$

Scattering Directions Fixed CNTs

Magnetic Dipole Type Interaction, $m_{\gamma} = 5 \text{ MeV}$

Fixed CNTs Facing Away From DM Wind

Fixed CNTs, facing away from the DM wind

Moving CNTs, Back to Back

in lower detector

Moving CNTs, 90° Relative Orientation

*n*_: Number of detected events upper detector

Moving CNTs, 90° relative orientation

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15509

Moving CNTs, 145° relative orientation

\mathcal{O}_1 Contact Interaction

\mathcal{O}_1 Long Range Interaction

R. Catena, T. Emken, M. Matas, N. Spaldin, EU: 2303.15509

Anapole Interaction

 $\mathcal{O}_3 \propto \mathbf{q} \times \mathbf{v}$ 10 g year exposure $L_{\text{Anapole}} \in \frac{g}{2\Lambda^2} \,\bar{\chi} \gamma^{\mu} \gamma^5 \chi \,\partial^{\nu} F_{\mu\nu}$

Electric Dipole Interaction

Magnetic Dipole Interaction

 $L_{\text{Electric dipole}} \in \frac{g}{\Lambda} i \bar{\chi} \sigma^{\mu\nu} \gamma^5 \chi F_{\mu\nu} \qquad 10 \text{ g year exposure} \qquad L_{\text{Magnetic dipole}} \in \frac{g}{\Lambda} \bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu}$

\mathcal{O}_1 Contact Interaction

\mathcal{O}_1 Long Range Interaction

\mathcal{O}_3 Contact Interaction

Anapole Interaction

$$\mathcal{O}_3 \propto \mathbf{q} \times \mathbf{v}$$
 10 g year exposure $L_{\text{Anapole}} \in \frac{g}{2\Lambda^2} \,\bar{\chi} \gamma^{\mu} \gamma^5 \chi \,\partial^{\nu} F_{\mu\nu}$

Electric Dipole Interaction

Magnetic Dipole Interaction

 $L_{\text{Electric dipole}} \in \frac{g}{\Lambda} i \bar{\chi} \sigma^{\mu\nu} \gamma^5 \chi F_{\mu\nu} \qquad 10 \text{ g year exposure} \qquad L_{\text{Magnetic dipole}} \in \frac{g}{\Lambda} \bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu}$