Cosmic ray interaction models nace applied to a large blazar sample P

Xavier, Rodrigues, **TeV Particle Astrophysics (TeVPA)** Naples, September 11 2023

, misaligned count

1>1~10

calls in Fi

IceCube detection

Modeling active galaxies

Credit: Bill Saxton, NRAC

Modeling active galaxies

Credit: Bill Saxton, NRAC

Modeling active galaxies

Credit: Bill Saxton, NRAC

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A)

5

Best-fit solution is leptonic (66% of the sample):

Hadronic cascades help explain X-rays or VHE gammas (14% of the sample):

9

Hadronic cascades dominate X-ray emission (20% of the sample):

Predicted event rates

12

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A) All model results available online: <u>github.com/xrod/lephad-blazars</u>

IceCube-Gen2

Predicted diffuse flux

All model results available online: <u>github.com/xrod/lephad-blazars</u>

IceCube stacking limit

Astrophysical Multiwavelength and MultiMessenger **Computation Software**

Gao+ 2017, ApJ 843

Coming out this year as open source software!

Spectra of IceCube Neutrino Candidate Sources (SIN)

Modeling a sample of ~50 HBL IceCube candidates by Giommi+ 2020

14

Padovani+ 2021 Paiano+ 2022 Paiano+ 2023

Summary

We have described MW emission from 324 gamma-ray blazars, most of which FSRQs

Best-fit parameters and SED fits publicly available: <u>github.com/xrod/lephad-blazars</u>

IceCube detects spurious hadronic blazar flares -> Gen2 could unveil population

Currently working on describing the role of IBLs+HBLs as neutrino emitters

We start to connect individual source modeling to the population scale

Backup slides

Predicted muon neutrino fluxes

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arX All model results available online: <u>github.com/xrod/lephad-blazars</u>

111

owiak and Winter (arXiv:2307.13024, submitted to A&A <u>xrod/lephad-blazars</u>

Predicted event rates

The model predicts low average detection rates from blazars

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A) All model results available online: <u>github.com/xrod/lephad-blazars</u>

Gen2 will start probing steady-state emission from the blazar population

Fitting method for each blazar:

Step 1. Constrain 8 leptonic parameters

Genetic algorithm

100.000 simulations per source

Fit microwave, IR, optical, UV, GeV

7

Step 2. Constrain proton parameters

Grid scan 100 simulation

Fit all wavelengths above 300 GHz

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A)

2100 simulations per source

Step 3. Improve fit

Local minimizer

200 simulations per source

Improve fit

Omeliukh+ 2023 (ICRC proceedings)

Our sample

6

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A)

Multi-messenger models of blazar AGN

BL Lacs

disk

emission

One-zone model

• Electrons + cosmic rays

- **Own non-thermal radiation**
- Neutrino and gamma-ray emission from p-gamma interactions

Flat-Spectrum Radio Quasars (FSRQs)

disk

emission

dust

torus

atomic broad lines

External-field model

- Cosmic rays interact with thermal and broad line photons
 - May **boost neutrino** emission
 - May attenuate gamma rays

Credit: Bill Saxton, NRAO/AUI/

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A) 20

Neutrino efficiency

All model results available online: <u>github.com/xrod/lephad-blazars</u>

21

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A)

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A) 22

Best-fit baryonic loading (== L_p / L_e) scales inversely with L_v

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A) 23

with L_{v}

Will we find IceCube blazars in GeV y-rays?

6.2° 5.8° TXS 05 5.4° 5.0°

Will we find IceCube blazars in MeV gamma rays?

What about the ultra-high energies?

Assuming AGN are accelerators

Blazars as accelerators of PeV cosmic rays Palladino, XR, Gao & Winter, ApJ 871 (2019) no.1, 41

Diffuse neutrino flux

Baryonic loading