

Characteristics of the HEPD-02 detector for the CSES-02 space mission

Zouleikha Sahnoun on behalf of the LIMADOU Collaboration

The CSES Space Missions

The **China Seismo-Electromagnetic Satellite** (CSES) is a space program in collaboration between China and Italy, dedicated to the monitoring of the near-Earth environment to investigate the lithosphere-magnetosphere coupling.

Scientific Objectives:

- Analysis of the **ionosphere**, **magnetosphere** and **plasma** in the near-Earth environment;
- Measurements of ionospheric and magnetospheric **perturbations** possibly correlated to strong seismic events;
- Measurement of the **flux** of charged particles and their **precipitation** from the Inner van Allen radiation belt;
- Monitoring electromagnetic anthropic effects at low-Earth orbit altitude
- Study Solar-terrestrial interactions CMEs, SEPs, solar physics;
- Measurement of the low-energy spectrum of galactic cosmic rays;

HEPD-01 onboard CSES-01

CSES-01 was launched in February 2018.

- Sun-synchronous circular orbit, 507 km (LEO), pointing to Zenith
- 9 instruments, among which the High Energy Particle Detector (HEPD-01) developed by the Italian LIMADOU collaboration

Electron count enhancement during Geomag. storm of 26/08/2018

Talks HEPD-01 @ TeVPA:

- "Galactic cosmic rays results from HEPD-01 detector on board CSES-01 satellite", Dr. B. Panico, this session
- "Gamma-Ray Burst observations by HEPD-01 space detector on board CSES-01 as an anticipation of future ones by HEPD-02 on CSES-02", Dr.
 F. Palma, tomorrow session Gamma Ray Astronomy

HEPD-01 onboard the CSES-01 satellite

Δ

HEPD-02 onboard CSES-02

≻CSES-02 launch foreseen in 2024.

- Sun-synchronous circular orbit, 500 km altitude
- Same orbital plane of CSES-01, with a phase shift of 180°
 → multi-satellite approach
- Complementary orbit with CSES-01

The Limadou collaboration developed 2 of the 11 instruments on board: the High Energy Particle Detector (HEPD-02) and the Electric Field Detector (EFD-02). HEPD covers the highest energy region of sensitivity

Kin. energy range (electron)	3 MeV to 100 MeV
Kin. energy range (proton)	30 MeV to 200 MeV
Angular resolution	≤10° for E _{kin} > 3 MeV electrons
Energy resolution	≤10% for E _{kin} > 5 MeV electrons
Particle selection efficiency	> 90%
Detectable flux	up to 10 ⁷ m ⁻² s ⁻¹ sr ⁻¹
Operating temperature	-10 °C to +35 °C
Operating pressure	≤ 6.65 · 10 ⁻³ Pa ("vacuum")
Mass budget	50 kg
Power Budget	45 W
Data budget	≤ 100 Gb/day

The High Energy Particle Detector (HEPD-02)

HEPD-02 is designed to measure fluxes of electrons, protons and heavy nuclei in a wide range of energies , from 3 to 100 MeV for electron, and 30 to 200 MeV/n for protons and heavy nuclei.

- Two orthogonal trigger planes TR1 (2 mm thick) and TR2 (8 mm thick), composed of segmented plastic scintillators
- Direction detector (Tracker) based on 3 layers of Monolithic Active Pixels.
- Energy detector composed of:
 - a tower of 12 plastic scintillators (RAN), 150 × 150 × 10 mm³
 - Two orthogonal planes of segmented LYSO:CE crystals 50 × 150 × 25 mm³ (EN)
- five plastic scintillator panels, covering the sides and bottom, composing the containment detector (CD).

Geometrical factor

Depending on the zone along the orbit, different trigger masks can be used at the same time.

- Max 6 concurrent trigger masks; (default TR1&TR2)
- 4 trigger masks can be **pre-scaled**;

Innovative Design

HEPD-02 first use in space of:

- ACTIVE MONOLITHIC PIXEL SENSORS based on MAPS development for ALICE experiment at CERN

Theta [deg]

- Large size LYSO:CE crystals (50 × 150 × 25 mm³)

3 layers of 5 independent modules (staves)

coluster size:

The module made of LYSO crystals will be sensitive to Gamma-Ray Bursts of energy larger than 2 MeV. (courtesy F. Follega and A. Lega, ICRC 2023, 116 and 758)

Kinetic Energy [MeV]

11/09/2023

Energy Reconstruction

-50

-100

-150

-250

-300

-350

-400

50

ADC signals from the calorimeter and the particle impact position and direction

 \rightarrow reconstruct the deposited energy.

 \rightarrow corrections for the energy lost in the inert materials using MC

> Energy resolution limited by multiple scattering at low energies;

HEPD-02 Test Beam Campaign validation of HEPD-02 performance

Electrons, 30-450 MeV @ BTF, Frascati (Italy) **Electrons** 6-12 MeV /gamma @ Medical LINAC, S. Chiara Hospital, Trento (Italy)

Protons, 20-230 MeV @ Trento Proton Therapy Centre **Carbon ions**, 115-400 MeV/amu @ CNAO, Pavia (Italy)

Electron test beam at Linac Santa Chiara

Carbon test beam at CNAO, Pavia.

Santa Chiara (Italy)

Summary and Perspective

- HEPD-02 has a new design and upgrades with respect to HEPD-01;
- First use of MAPS in space and large LYSO crystals;
- It was fully integrated and passed all space qualification tests;
- Good reconstruction capabilities and improved trigger capability;
- The Flight Model (FM) is to be integrated in CSES-02 satellite with a launch foreseen in **2024**.

Thank You

HEPD-01 is designed to measure fluxes of charged particles: electrons (3-100 MeV) and protons (30-200 MeV).

