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● In-ice Askaryan radio detectors are being 
deployed to detect & identify the cosmic 
neutrino flux at the highest energy regime.

● Detection of in-situ Askaryan radiation from a 
particle cascade will be important proof-of-
concept for our in-ice radio detectors.

● Radio signal from cosmic-ray cascade → 
background + calibration source for in-ice 
radio detector.

Neutrino Astronomy At Extreme Energies
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Cosmic-ray Signals In In-ice Radio Detectors

● We have created the 1st cosmic-ray 
cascade simulation that models the in-air and 
in-ice radio emissions.

● Will allow us to quantify key properties of the 
cosmic-ray cascade radio signal. 

● Will enable us to identify cosmic-ray 
cascade radio signals in in-ice radio detector 
data & distinguish from neutrino radio 
signals.
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Current Status
● In-air radio emission with ray tracing 

● In-ice radio emission with ray tracing
– Direct (1st) and Reflected/Refracted (2nd)

● Fresnel coefficients

● Focusing/defocusing factor (in-ice)

● Transition radiation (“for free”)
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Current Configuration
● Simulation of in-air particle development using CORSIKA 7.7500 with modified CoREAS

– Proton, Energy 1x1017 eV
– QGSJETII-04 (HE), UrQMD (LE)
– Thinning
– Particle read-out at altitude of 2.835 km asl

● Simulation of in-ice propagation using Geant4 10.5
– Propagation of all CORSIKA output particles within 1 m of core.
– Using realistic ice density gradient
– End-point formalism for radio emission
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Shower Geometry
● Vertical Proton Shower at 1017 eV

● Ice layer at around 2.85 km a.s.l

● Antenna Star Grid at -150 m depth.

● Shower core hitting at the center of the star.
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Electric Field Waveform
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● In-air emission generates 
both Askayran and 
geomagnetic emission, 
interference explains the 
asymmetry

● Very similar to radio 
footprint on the surface
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● In-ice emission only 
generates Askayran 
emission, giving a very 
symmetric pattern

● Cherenkov ring clearly 
visible, as cascade in the 
ice is very compact O(5 -10 
m), concentrating emission 
in small opening angle.
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● In-air emission 
illuminates the center, 
while in-ice emission is 
very concentrated 
around its Cherenkov 
ring

● Slight asymmetry in ring 
due to interference with 
geomagnetic in-air 
emission.
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Time Delay Between Air & Ice 
Pulses

● Time delay as a 
function of Antenna 
Star Grid and 
distance to shower 
axis.

● Is an important 
feature to identify 
cosmic ray events in 
data.
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Conclusion
● The simulation is working well.

● Simulating more shower geometries to get a better 
understanding.

● We can start exploring ways initiating comparisons with 
CORSIKA 8 and also porting the framework into CORSIKA 8. 



09/07/23 U. A. Latif & S. de Kockere 13

Thank you!
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Raytracing
● Rays are refracted owing to the 

depth-dependent density, and 
therefore index of refraction profile.

● For any given a transmitter and 
receiver geometry I have an 
analytic solution that traces out the 
rays in ice and air.

● The refractive index profile can be 
parametrised as:

Ray paths for a source at a depth of 
200 m. The bending causes the 
formation of ‘shadow zones’.

Shadow 
zone
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Other details
● Raytracing implemented using interpolation

– Helps account for non-linear refractive index 
profiles

● Focusing factor formula taken from NuRadioMC
– Limited to a maximum of 2
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Spread of In-Ice 
Cherenkov Cone Ice

Air

n1=1.35
θC1=42.2

n2=1.45
θC2=46.4

1

2
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“Adding” Raytracing to CoREAS
● CoREAS uses end point formalism to calculate E-field emissions.

● In this formula, I use the following raytracing parameters: 
– Launch angles as the dot product angle 
– Geometrical path length of the ray for the value R
– The value of n is taken to be n at the emission point.
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Raytracing in Polar Ice
● Rays are refracted owing to the 

depth-dependent density, and 
therefore index of refraction profile.

● For any given a transmitter and 
receiver geometry I have an analytic 
solution that traces out the rays in 
ice and air.

● The refractive index profile for SP 
ice:

Ray paths for a source at a depth of 
200 m. The bending causes the 
formation of ‘shadow zones’.

Shadow 
zone

, here A=1.78, B=-0.43, C=-0.0132 1/m
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Air Refractive Index Profile
● Get the GDAS atmosphere 

file for a given set of GPS 
coordinates.
– In this case its for a location 

close to South Pole.

● Get the five layer refractive 
index model using the 
GDAS file.

A, B and C values for the five 
exponential refractive index layers of 
the South Pole atmosphere.
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P

● Raytracing:
● For a given transmitter receiver geometry we can always find the shortest 

possible path between them by minimizing the following expression:

Launching Rays from Air to Ice

z

h
Air

Ice

θFour parameters 
that define a 
Geometry

1) Transmitter altitude
2) Ice Layer Altitude
3) Antenna Depth
4) Total Horizontal 

Distance (THD) 
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Raytracing Time
● So a typical raytracing call involving air and ice takes around 0.05 

to 0.1 ms.
– Currently making the atmosphere takes around 22 ms.

● Calling the analytic raytracing function for all shower particles 
(~10^9) at all heights is still not feasible.
– A shower will take around from a week to a month to simulate. 

● Therefore, we have to move towards interpolation.
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Interpolation Method
● For a given antenna depth I make 2-D grid of:

– THD (Total Horizontal Distance)
– The altitude of the in-air transmitter

● For each grid position I do analytic raytracing and store:
– The initial launch angle of the ray
– The total optical path length of the ray in air and in ice
– The horizontal distance traveled by the ray in air and ice.
– The angle of incidence on the ice surface and the Fresnel 

coefficients associated with it.

● Linear interpolation is used to calculate a given raytrace 
parameter.
– It takes around 250 ns to do interpolation for each parameter.

z

h

Air

Ice
2-D Interpolation Grid

h

θ
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Interpolation Method
● θ (or the launch angle) has a step size of 0.1 deg and h has a step size of 10 m.

– θ starts off at 90.1 deg and ends at 180.0 deg.
– h starts off at 3000 m (the ice layer altitude) and ends at 100000 m.

● If the antenna depth changes we will need to make another 2-D grid for that.

● It takes around 60±2 s to make the whole grid. 

● For any given coordinate of (h,THD) 
– the closest h bins are calculated
– The corresponding range of THDs for the h bins are found and the closest THD bins are found.
– using the linear interpolation method the interpolation parameter value at the requested coordinate is calculated.



09/07/23 U. A. Latif & S. de Kockere 26



09/07/23 U. A. Latif & S. de Kockere 27

Fresnel Coefficient calculation
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So effectively we have described the S and P vectors in terms of the vector of incidence.

So in order to apply Fresnel Coefficients to E-fields we will do:
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The Radio Footprint
In Varying Radio 
Bands
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Energy Scaling

● The in-ice and in-air 
radio signal amplitudes 
scale linearly with the 
energy of the primary 
cosmic ray particle. 

● Here we see a 10x 
increase in amplitude for 
1e18 eV shower as 
compared to 1e17 eV 
shower.
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Focusing Factor 1st ray 100 m
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Focusing Factor 2nd ray 100 m
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Focusing Factor 1st ray 400 m
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Focusing Factor 2nd ray 400 m
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WHY DOES THE BOOSTFACTOR MATTER?
The end point formalism (arxiv.org/abs/1112.2126) :

When calculating as 1 − 𝑛𝛽 cos 𝜃 :
What n?
What 𝜃 ?

Previous studies (A. Timmermans, Ba. Thesis) show that a straight line approximation
might not be valid for very inclined geometries in air 

IN AIR BURSTS

12 july 2022

D. Van den Broeck
Radio propagation in non-uniform media

𝐵𝑜𝑜𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟−1 𝜃𝑙𝑎𝑢𝑛𝑐ℎ
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WHAT ABOUT INCLINED SHOWERS?
IN AIR BURSTS

12 july 2022

D. Van den Broeck
Radio propagation in non-uniform media

The estimator with local n and launch angle works well here too! 
The others do not agree 𝑚𝑎𝑥
Similar results found by A.Timmermans

Dieder's ARENA 2022 Talk 

https://indico.cern.ch/event/826366/contributions/4880779/attachments/2456702/4210832/DiederVdBPropagationNonUniform.pdf
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