Understanding the Origin of Cosmic-Ray Electrons

TEVPA 2023 Napoli Dimitrii Krasnopevtsev (MIT) on behalf of the AMS Collaboration

Electron identification with AMS

- Tracker planes 1 to 9 measure the particle charge and momentum.
- The TRD identifies the particle as an electron.
- ➤ The TOF measures the charge and ensures that the particle is downward-going.
- The RICH independently measures the charge and velocity.
- The ECAL measures the 3D shower profile, independently identifies the particle as an electron and measures its energy.

AMS on ISS

AMS 2011-2025

Continuous data-taking

AMS 2025-2030

New 8m² Silicon Tracker Layer Acceptance increased to 300%

Projections to 2030

Latest Results: 2011-2022

TEVPA2023

The origins of cosmic electrons

Dark Matter

Dark Matter

Supernovae

Electrons, **Protons**, **Helium**, ...

Interstellar Medium

> e[±] from collisions

> > e[±] from Pulsars

New Astrophysical Sources (Pulsars, ...) **p**, e[±] from Dark Matter

TEVPA2023

Latest Physics Results from AMS: Study of Positrons & Electrons

The Origin of Electrons

The contribution from cosmic ray collisions is negligible

The Origin of Electrons

AMS Result on the electron spectrum The spectrum fits well with two power laws (a, b) and a source term like positrons

By 2030, AMS will extend the energy range of the electron flux measurement from 2 to 3 TeV and reduce the error by a factor of two compared to current data

By 2030, the charge-symmetric nature of the high energy source will be established at the 4σ level

Electron Anisotropy

The electron flux is found to be consistent with isotropic distribution.

TEVPA2023

Summary

- □ The behavior of the electron and positron spectra is distinctly different.
- Electron spectrum shows complex behavior that can be best described by the sum of two power law functions and the contribution of the positron-like source term.
- Significance of this observation is 2.6σ at present. More data is needed to establish the existence of charge-symmetric positron-like source term at highest electron energies.
- □ By 2030, the charge-symmetric nature of the high energy source will be established at the 4σ level.