Searches for anisotropy

on the arrival directions of ultra-high-energy cosmic rays: updates and prospects

Emily Martins

edyvania.martins@kit.edu

on behalf of the Pierre Auger Collaboration

spokespersons@auger.org

UNSAM

PIERRE AUGER OBSERVATORY

Extragalactic UHECR

- Higher-order multipoles not significant
- Excess away from Galactic center
- Above 8 EeV

Science 357 (2017) 1266

Large Scale Anisotropy The dataset

• Jan. 2004 - Dec. 2022		
 Energy ranges 		
1/32 EeV to	1/2 EeV	$\theta < 55^{\circ}$
1/4 EeV to	4 EeV	$ heta < 60^{\circ}$
above	4 EeV	$\theta < 80^{\circ}$

Exposure

SD 750 array = SD 1500 array =

337 km² yr sr 81 000 km² yr sr 123 000 km² yr sr

Harmonic Analysis

- 1.08 Modulation of event rate in RA (α) • Dominated by first-harmonic Fourier 1.06 components 1.04 Normalized rates 0.98 $a_k^x = \frac{2}{N} \sum_{i=1}^N w_i \cos(kx_i) \qquad b_k^x = \frac{2}{N} \sum_{i=1}^N w_i \sin(kx_i)$ • Amplitude and phase: $\tan \varphi_{\alpha} = \frac{b_{\alpha}}{a_{\alpha}}$ 0.9 $r_1^{\alpha} = \sqrt{a_{\alpha}^2 + b_{\alpha}^2}$
- 3D dipole amplitude

$$d_z \simeq \frac{b_1^{\phi}}{\cos \ell_{\rm obs} \langle \sin \theta \rangle}$$

300

Amplitude & phase

Increasing amplitude above 2 EeV + Phase shifted away from Galactic centre

Suggests shift from galactic to extra-galactic origin of UHECR anisotropy

PoS(ICRC2023) 252

Amplitude & phase

PoS(ICRC2023) 252

Intermediate Scale Anisotropy The dataset

- Jan. 2004 Dec. 2022
- Energy above 32 EeV, $\theta < 80^{\circ}$
- Looser selection of events

Exposure

SD 1500 array = $135\ 000\ \text{km}^2\ \text{yr}\ \text{sr}$

Centaurus excess

- CenA \approx 4 Mpc away
- Scan in Centaurus region
- Significance: 3.9σ (ApJ2022) \rightarrow **4.0** σ (ICRC23)
- If signal is real, reach 5σ significance at (165 000 ± 15 000) km² yr sr (**2025 ± 2 years**)

Centaurus region

330° 300° 240° 210° GC 270°

$$10$$
 15 20
 0^{-3} km⁻² sr⁻¹ yr⁻¹]

longitude

[EeV]

 \mathbf{E}^{th}

Threshold Energy,

PoS(ICRC2023) 252

The next step: combining observables The dataset

• Arrival directions

- >16 EeV
- $\circ\,$ Jan. 2004 to Dec. 2020
- Exposure 95 700 km² yr sr ($\theta < 60^{\circ}$) and 26 300 km² yr sr ($60^{\circ} < \theta < 80^{\circ}$)

• Energy

- >10 EeV
- \circ Jan. 2004 to Aug. 2018, $\,\theta < 60^\circ$
- Exposure 60 426 km² yr sr

• Shower-maximum depth distribution

- >10 EeV
- FD measurements

The next step: combining observables

- Energy, *X*_{max} and arrival direction
- Homogeneous background + Source catalogs (SBG / y-AGN) or single source (Cen A)
- Blurring of ~14° to 20° at a rigidity of 10 EV

- NGC4945 (SBG), or by Cen A

• SBGs model preferred at 4.5σ. Centaurus region contributes most • Overdensity in Centaurus region described either by

• In both, source contributes to ~3% of flux at 40 EeV

Summary

- Arrival direction anisotropies are relevant in different scales: • Intermediate scale: increasing excess in the Centaurus region (4.0 σ) Large scale: significant dipole structure in 8 to 16 EeV (5.7 σ) and > 8 EeV (6.9 σ) 0
- Strong indications of a transition from galactic- to extra-galactic origin of the observed anisotropies of cosmic rays in the EeV region
- Complementary information is being used to further investigate: \circ Combined fit with energy and X_{max} points to favorable astrophysical scenarios
- Next on probing the origin of CRs: propagation effects are mass- and charge-dependent **AugerPrime**

Thank you Muito obrigada

Emily Martins edyvania.martins@kit.edu

on behalf of the Pierre Auger Collaboration

spokespersons@auger.org

CosmicFlow-2 (Hoffman et al. 2018)

UNSAM

