Overview of the recent results of the Telescope Array experiment

Kozo Fujisue

ICRR, the University of Tokyo

Telescope Array collaboration

Telescope Array Collaboration

R.U. Abbasi¹, Y. Abe², T. Abu-Zayyad^{1,3}, M. Allen³, Y. Arai⁴, R. Arimura⁴, E. Barcikowski³, J.W. Belz³, D.R. Bergman³, S.A. Blake³, I. Buckland³, B.G. Cheon⁵, M. Chikawa⁶, A. Fedynitch^{6,7}, T. Fujii^{4,8}, K. Fujisue⁶, K. Fujita⁶, R. Fujiwara⁴, M. Fukushima⁶, G. Furlich³, Z. Gerber³, N. Globus^{9*}, W. Hanlon³, N. Hayashida¹⁰, H. He⁹, R. Hibi², K. Hibino¹⁰, R. Higuchi⁹, K. Honda¹¹, D. Ikeda¹⁰, N. Inoue¹², T. Ishii¹¹, H. Ito⁹, D. Ivanov³, A. Iwasaki⁴, H.M. Jeong¹³, S. Jeong¹³, C.C.H. Jui³, K. Kadota¹⁴, F. Kakimoto¹⁰, O. Kalashev¹⁵, K. Kasahara¹⁶, S. Kasami¹⁷, S. Kawakami⁴, K. Kawata⁶, I. Kharuk¹⁵, E. Kido⁹, H.B. Kim⁵, J.H. Kim³, J.H. Kim^{3[†]}, S.W. Kim¹³, Y. Kimura⁴, I. Komae⁴, K. Komori¹⁷, Y. Kusumori¹⁷, M. Kuznetsov^{15,18}, Y.J. Kwon¹⁹, K.H. Lee⁵, M.J. Lee¹³, B. Lubsandorzhiev¹⁵, J.P. Lundquist^{3,20}, T. Matsuyama⁴, J.A. Matthews³, J.N. Matthews³, R. Mayta⁴, K. Miyashita², K. Mizuno², M. Mori¹⁷, M. Murakami¹⁷, I. Myers³, S. Nagataki⁹, K. Nakai⁴, T. Nakamura²¹, E. Nishio¹⁷, T. Nonaka⁶, S. Ogio⁶, H. Ohoka⁶, N. Okazaki⁶, Y. Oku¹⁷, T. Okuda²², Y. Omura⁴, M. Onishi⁶, M. Ono⁹, A. Oshima²³, H. Oshima⁶, S. Ozawa²⁴, I.H. Park¹³, K.Y. Park⁵, M. Potts^{3[‡]}, M.S. Pshirkov^{15,25}, J. Remington³, D.C. Rodriguez³, C. Rott^{3,13}, G.I. Rubtsov¹⁵, D. Ryu²⁶, H. Sagawa⁶, R. Saito², N. Sakaki⁶, T. Sako⁶, N. Sakurai⁴, D. Sato², K. Sato⁴, S. Sato¹⁷, K. Sekino⁶, P.D. Shah³, N. Shibata¹⁷, T. Shibata⁶, J. Shikita⁴, H. Shimodaira⁶, B.K. Shin²⁶, H.S. Shin⁶, D. Shinto¹⁷, J.D. Smith³, P. Sokolsky³, B.T. Stokes³, T.A. Stroman³, Y. Takagi¹⁷, K. Takahashi⁶, M. Takamura²⁷, M. Takeda⁶, R. Takeishi⁶, A. Taketa²⁸, M. Takita⁶, Y. Tameda¹⁷, K. Tanaka²⁹, M. Tanaka³⁰, S.B. Thomas³, G.B. Thomson³, P. Tinyakov^{15,18}, I. Tkachev¹⁵, H. Tokuno³¹, T. Tomida², S. Troitsky¹⁵, R. Tsuda⁴, Y. Tsunesada^{4,8}, S. Udo¹⁰, F. Urban³², I.A. Vaiman¹⁵, D. Warren⁹, T. Wong³, K. Yamazaki²³, K. Yashiro²⁷, F. Yoshida¹⁷, Y. Zhezher^{6,15}, and Z. Zundel³

Belgium, Czech Republic, Japan, Korea, Russia, Slovenia, USA

7 countries, 32 institutes

Overview of the Telescope Array (TA) experiment

- Located in Utah, U.S. at altitude of 1400 m
- 507 SDs (3 m² area, 1.2 km spacing) covering ~700 km²
 - Largest cosmic-ray observatory in the northern hemisphere
- 3 FD stations
 - Looking over SD array for hybrid detection
- Started observation in 2008

Reconstruction by SD

2 layers of plastic scintillators
(2 m x 1.5 m, thickness: 1.2 cm)

150cm

WLSF

PMT for Lower Layer PMT for Upper Layer

• 12 bit 50 MHz FADC

100cm

Tyvek Sheet

Stainless steel plate

Scintillator

10⁻¹

10³

Lateral distance [m]

TeVPA2023, 13th Sep. 2023

Reconstruction by FD

- 256 PMTs in a camera
- 12—14 telescopes in each station
- Covering 3°- 21° altitude

Hybrid reconstruction

- \cdot Simultaneous detection with FD and SD
- Better resolution
- Calibrate SD–energy with FD–energy
- to reduce systematic uncertainty of SD-energy

6

Energy spectrum

14 years of **TA SD** data (2008 –2022)

New feature in energy spectrum with a 4.0 σ significance ("instep" / "shoulder")

(Originally observed by Auger)

Pierre Auger Collaboration, Phys. Rev. Lett. **125**, 121106 (2020)

Energy spectrum

14 years of **TA SD** data (2008 –2022)

- Reconstruction with the same fluorescence yield model & missing energy model as Auger
 - Difference below 10^{19.5} eV: $9\% \rightarrow < 1\%$
- Reconstruction with CIC (which Auger uses)
 - Difference at the highest energy persists

Original TA hotspot with **5 years** of TA SD data

TA collaboration, ApJL 790 L21 (2014)

TeVPA2023, 13th Sep. 2023

Anisotropy New intermediate-scale anisotropy

15 years of TA SD data

New excess at lower energy region in the direction of **Perseus-Pieces Supercluster**

Composition

10 years of TA hybrid data: 3560 events after event selection

 Agreement with mixtures of light composition using QGSJET II-04 as a hadronic interaction model in 10^{18.2}eV – 10^{19.1} eV

The TA experiment expansion

 \cdot TA \times 4: increase the data collection speed for energies greater than 57 EeV

Area

 $[km^2]$

~700

~1000

~20

~0.4

When

(SD)

2008

2019

2017

started

- Half extension was made in 2019

Spacing

[m]

1200

2080

100

400-600

of

SDs

507

257

80

50

TA

TA×4*

TALE

TALE

infill

* Additionally deployed part, about half of the final plan

* Additionally deployed part, about half of the final plan

Energy spectrum & composition

$TA \times 4$ experiment

Energy spectrum

- \cdot 3 years of TA $\times\,4$ SD data
 - In this period,
 6 sub-arrays operated independently
- Consistent with TA SD energy spectrum including cutoff structure

Prospects

- Inter-tower trigger was implemented in Oct. 2022
 - \rightarrow Increasing the aperture
- Data analysis is ongoing

K. Fujisue (ICRC2023)

Summary

- The TA experiment observes UHECRs in the Northern Hemisphere
- Energy spectrum
 - Some features: Knee, 2nd-Knee, Ankle, Instep, Cutoff
- \cdot Mass composition
 - \cdot Agreement with light composition in $10^{18.2}$ eV $-10^{19.1}$ eV
 - \cdot <Xmax> breaks around 2nd-knee (~10^{17.1} eV) observed with TALE

\cdot Anisotropy

- TA hotspot for E > 57 EeV = $10^{19.76}$ eV: $\textbf{2.8}\,\sigma$ with 15 years of TA SD data
- \cdot New excess in direction of PPSC with E $> 10^{19.4}~\text{eV}$
- TALE + TALE infill ($10^{15} \text{ eV} < \text{E} < 10^{18.5} \text{ eV}$)
 - \cdot TALE infill will start observation in near future
- TA $\times\,4~(\text{E} > 10^{19.7}~\text{eV})$
 - $\boldsymbol{\cdot}$ Energy spectrum is consistent with TA SD energy spectrum