

Measurement of the muon content in EAS with muon detectors of LHAASO-KM2A

Xiaoting Fengting*, Hengying Zhang, Lingling Ma, Cunfeng Feng on behalf of LHAASO collaboration

Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

*speaker

- motivation
- the average muon content per shower energy
- the fluctuation of muon content of data and mc
- the attenuation length of muon content
- summary

motivation

- Muons are produced through the decay of mesons generated in hadronic collisions during the early stages of an extensive air shower
 - the average number of muons in a shower can be used to validate hadronic interaction models by comparing EAS predictions with experiment data
 - muons can provide important information about hadronic interactions, such as interaction length, production crosssection, and multiplicity, to validate and constrain the predictions of the hadronic interaction model
- Some experiments reported this "muon excess", other measurements, performed under different conditions, show the agreement in the muon number between data and models
 https://doi.org/10.1016/j.astropartphys.2017.04.001

Experiment	altitude, m a.s.l.	X, g/cm ²	<i>E</i> , eV	E_{μ} , GeV	r/R ₀	θ	muon excess (data over MC)
HiRes-MIA [6] PAO [2.4]	1500 1450	860 880	$10^{17} - 10^{18}$ $\gtrsim 10^{19}$	≳ 0.85 ≳ 1	≳ 10 ≳ 10	N/A 70°	yes ves
Yakutsk [5]	100	1020	$\gtrsim 10^{19}$	≳ 1	≥ 10	45°	yes
IceTop [26]	2835	680	$10^{15} - 10^{17}$	$\gtrsim 0.2$	\gtrsim 3	13° mean	no
EAS-MSU (this work)	190	990	$10^{17} - 10^{18}$	$\gtrsim 10$	≲ 3	30°	no

LHAASO and muon detector

Layout of LHAASO

Large High Altitude Air Shower Observatory, LHAASO Daocheng, altitude: $4410m (600g/cm^2)$ KM2A covers an area of $1.3 km^2$

1188 muon detectors(MDs) with a spacing of 30 m5216 electronic detectors(EDs) with a spacing of 15m

Schematic of the LHAASO muon detector

The sensitive area is $36 m^2$ Covered with 2.5 m soil to absorb other charge particles $E_{\mu} > 1 GeV$ Ultra-pure water: diameter 6.8 m, height 1.2 m PMT: 8 inches Resolution 25% at 1 muon; <5% at 10⁴ muons

Data and MC sample

- LHAASO sample
 - Jan-Dec of 2022
 - Full LHASSO KM2A array
 - Trigger mode: 400ns; 20ED

• MC sample

• Models: EPOS-LHC, QGSJET-II-04	component	100TeV-1PeV	1PeV-10PeV	10PeV- 50PeV(QGS)	10PeV - 50PeV(EPOS)
 Energy: 100TeV-50PeV Common proton Ho CNO Mod1Si Fe 	Proton	106	10 ⁵	2.5×10^{4}	5×10^{3}
 Components: Proton, He, CNO, MgAISI, Fe Slope:-2 	He	10 ⁶	10 ⁵	10 ⁴	5×10^{3}
• Theta: 0-40°	CNO	10 ⁶	10 ⁵	10 ⁴	5×10^{3}
• Phi: 0-360°	MgAlSi	10 ⁶	10 ⁵	10 ⁴	5×10^{3}
CORSIKA; Geant4	Fe	10 ⁶	10 ⁵	1.5×10^{4}	5×10^{3}

Time

Effect time

5

365 days

359.46 days

Event selection

- Ne>80 (the number of particles within 40 to 200 meters from the shower axis.)
- 300<=R<=450(the distance from shower core to array center)
- $\theta < 40^{\circ}$
- Event number
 - LHAASO: **1.8**× **10**⁹
 - MC: EPOS-LHC: **682** k QGSJET-II-04: **673** k

Shower core distribution in LHAASO array

Muon measurement validation

 $N_{\mu_{-}u}$: muon number measured by one muon detector

N_{μ_u} of MC is consistent with experiment

Muon number spectrum

Detectors with a particle number less than 0.2, as indicated by the vertical lines, are excluded from reconstruction in both Monte Carlo (MC) simulations and data

 N_{μ} : The muon numbers measured by MD within the range of 40~200 meters from the shower core on the front surface

not count the MD closing to the core, reducing the punch through effect

reducing the noise contribution, not counting the MD 200 m far from the core

Average muon number per energy

 $< N_{\mu} >$: average muon number

- data is between with pure Proton and pure iron, as the energy increases, $\langle N_{\mu} \rangle$ approaches closer to iron
- data looks lighter than Gaisser H3a energy spectrum with the energy above 1PeV
- no muon excess

Relative fluctuation

0.5

0.45

0.4

0.35

0

0.25

0.

0.15

0.

0.05

5.5

 $\sigma(N_{\mu})/\langle N_{\mu}\rangle$

The relative fluctuation $(N_{\mu} - \langle N_{\mu} \rangle) / \langle N_{\mu} \rangle$

The simulation and experimental results are in good agreement.

The fluctuation of data is larger than iron

Attenuation length of muon number

Constant Intensity Cut (CIC)

Cosmic ray is isotropic

The same intensity at each direction corresponding to the same energy of cosmic ray

 $N_{\mu}(\theta) = N_{\mu}^{0} e^{-X_{0} sec\theta/\Lambda_{\mu}}$

 N^0_{μ} is a normalization parameter

 X_0 is the vertical atmospheric depth, 600 g/cm^2 at LHAASO

 Λ_{μ} is the muon number attenuation length

Attenuation curves

- $0^{\circ}-15.98^{\circ}-22.91^{\circ}-28.48^{\circ}-33.41^{\circ}-38^{\circ}, sin^{2}\Delta\theta = 0.0758$
- $lgJ \in [-9.0, -5.1], \Delta lgJ = -0.3$

LHAASO

Attenuation length

Attenuation length of different flux

- The bars represent the statistical error
- The shaded area represents the systematic error

The attenuation length of muon @lgJ=-8.5

	Systematics(%) Attenuation length(a	DATA	EPOS-LHC	QGSJET- II-04	
	$sin^2\Delta\theta$	0.07	3	4	3
		0.08	-0.1	-8	2
	Fit four zenith angle	first four	-4	10	-6
	bin	last four	-2	-8	11
	Core distance	300-375m	6	0.2	2
		375-450m	-4	4	-2
	integral bins number	30	0.4	-6	-3
		50	0.2	-5	-2
	Atmospheric depth (g/cm^2)	614-657	-4		
		695-759	2		
	Total		+7 -7	+11 -13	+11 -7
Baseline (0.075, 0°-38°, 300m- 450m, 40, 600-738)			${747 \\ \pm 26^{52}_{52}}$	733 ± 86 ⁸⁰ ₉₅	${740} \\ \pm 46^{81}_{51}$

Attenuation length with energy

https://doi.org/10.1016/j.astropartphys.2017.07.001

- The attenuation length of muon increases with energy
- $\Lambda_{\mu} = 747 \pm 26^{52}_{52} g/cm^2$ for data with lg(E/GeV)=7.31
- The results of LHAASO look match with simulated results of KASCADE.

- No deviation in data measurement
 - After 1 PeV, the data becomes lighter
 - The fluctuations in the data are in agreement with the simulation
 - Presented the attenuation lengths of muon number from 100 TeV to 50 PeV

Thanks for your attention

Back up: systematic error

• Zenith angle bin (1) $sin^2\Delta\theta = 0.07$: 0, 15.43°, 21.97°, 27.18°, 31.95°, 36.27° (2) $sin^2\Delta\theta = 0.08$: 0, 16.71°, 23.99°, 29.86°, 35.09°, 40°

Fit four zenith angle bin
1 Fit: 0°, 15,98°, 22.91°, 28.48°, 33.41°
2 Fit: 15,98°, 22.91°, 28.48°, 33.41°, 38°

• Distance from the shower core to the center of the array

1 300m-375m;

2 375m-450m

• The number of integral bins

(1) 30

2 50

• Atmospheric depth traversed by muons

 $(1) X_0 * sec\theta = 614g/cm^2 - 657g/cm^2 (9.97^{\circ} - 25.10^{\circ})$

 $(2) X_0 * sec\theta = 695g/cm^2 - 759g/cm^2$ (29.33°-38.65°)

Back up : muon trigger

NhitM: npe

VEM:75

events: plotting points number

Muon trigger of same aperture

Back up : effective area

$$effect = \frac{Ncut}{Ntotal} * S$$

Ncut: The number of events after cut Ntotal: CORSIKA plotting points number S: total area LHAASO

Back up : efficency

Full efficiency with lgE(GeV)>5.2

Back up : average muon content

average muon content

Back up : energy

Back up : Pressure correction

LHAASO