

U 23

Unique Properties of Secondary Cosmic Rays Results from the Alpha Magnetic Spectrometer

José Ocampo Peleteiro (CIEMAT) on behalf of AMS Collaboration

GOBIERNO

DE ESPAÑA

MINISTERIO

DE CIENCIA

E INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The Spallation Picture: Primary and Secondary Cosmic Rays

<u>Primary nuclei</u> (He, C, O, Ne, Mg, Si, Fe) are fused in stars through the α-process and injected into the Galaxy in a supernova explosión.

 $0 + ISM \rightarrow Be, Li,...$

Be

Si + ISM \rightarrow Al, F,...

<u>Secondary nuclei</u> (Li, Be, B, F, sub-Fe...) are produced by the fragmentation of primary cosmic rays with the ISM (cold H and He).

Fe + ISM→ Mn, Cr, V, Ti,

The Diffusion Picture: Primary and Secondary Cosmic Rays

Primary nuclei are contained in the Galaxy due to inhomogenous magnetic fields. Their propagation is characterised by a diffusion coefficient ~ $R^{-\delta}$ that modifies their spectrum.

O + ISM → Be, Li,...

Si + ISM→ AI, F,...

Diffusion halo

Fe ⇔ ISM → Mn, Cr, V, Ti, ...

Secondary nuclei are produced by an already diffused primary spectrum, thus their spectrum is 'doubly' diffused ~ $R^{-2\delta}$. Secondary-to-primary flux ratios reveal the dependence of the diffusion coefficient with rigidity.

Mn

Measurement of the Fluxes of Nuclei with AMS

The AMS flux in the rigidty interval $[R_i, R_i + \Delta R_i]$ is computed as:

$$\phi_i = \frac{N_i}{A_i T_i \Delta R_i}$$

- *N_i* are the selected event counts corrected for bin-to-bin migrations after background subtraction,
- *A_i* is the effective acceptance including geometric factor, selection and reconstruction efficiencies and nuclear interactions
- T_i is the exposure time

Charge Identification of Nuclei in AMS Analysis

- AMS has good charge measurement capabilities. Inner tracker resolution ~0.05-0.13 c.u. for 3≤Z≤9, Y. Jia *et al.*, *Nuc. Instr. And Meth. in Phys A* 972, 164169 (2020).
- Background due to charge misidentification in non-interacting samples is neglible over the whole rigidity range.

Background Subtraction in AMS Analysis of Nuclei

- A residual background originates from nuclear interactions in the material between the inner tracker and the layer 1. A clean sample is obtained with template fits of charge distributions.
- The background from interactions on the little material above L1 has been estimated from simulation using MC samples generated according to AMS flux measurements.
- The error due to background subtractions typically amounts to few percent (<2% below 100 GV and <6% below 3 TV).

Fragmentation Studies of Nuclei in AMS

- The absolute normalisation of the fluxes is largely dependent on the nuclear inelastic cross-section of cosmic rays with the material of the instrument (mostly carbon and aluminium).
- The inelastic cross sections of nuclei with carbon target has been measured by determining the tracker L1-L2 and L8-L9 nuclei survival prob., Q. Yan *et al., Nuclear Physics A* 996, 121712 (2020).

 $10^2 2 \times 10^2$

Rigidity [GV]

20 30

0.95

3 4 5 6 7 10

Recap: Spectral Hardening in the Fluxes of Nuclei

see details in Dr. Valerio Formato's talk

- The spectra of primary He, C and O harden in an indentical way above ~200 GV.
- This hardening can be attributted to the injection spectrum at the source or in the diffussion coefficient.

Fluxes of Lithium, Beryllium, Boron and Fluorine

9

Secondary-to-Primary Flux Ratios

- All spectra of secondary nuclei harden above ~200 GV.
- Above 200 GV all three secondary-to-primary flux ratios harden, $\Delta_2 \Delta_1 = 0.11 \pm 0.02.$
- This hardening is similar to that found for primary nuclei.
- AMS data support a spectral hardening of the fluxes of nuclei due to propagation with more than 5σ significance.

11 years AMS data

Recap: Two Classes of Primary Cosmic Rays

see details in Dr. Valerio Formato's talk

 AMS data show that above 86.5 GV He, C and O have a distinct rigidity dependence than Ne, Mg and Si: γ_{HeCO} = γ_{NeMgSi} + 0.032 ± 0.006.

Secondary-to-Primary Flux Ratios

- Above 175 GV, the F/Si ratio exhibits a hardening Δ₂^{F/Si} Δ₁^{F/Si} = 0. 13 ± 0. 06 compatible with the AMS result on the hardening of B/O flux ratio.
- Above 10 GV, the (F/Si)/(B/O) ratio is not flat but can be described by a single power law with $\delta = 0.055 \pm 0.006$.

Fluxes of Lithium, Beryllium, Boron and Fluorine

11 years AMS data

Conclusions

- The measurement of the fluxes of secondary nuclei is paramount for the understanding of the physics of diffusion of cosmic rays in the galaxy.
- AMS has presented high-statistics measurments of the fluxes of secondary nuclei lithium, beryllium, boron and fluorine in the range 2 GV to 3 TV with detailed study of systematic errors.
- The fluxes of secondary nuclei consistently harden above ~ 200 GV and secondaryto-primary flux ratios support the hypothesis of a spectral hardening related to a propapagation effect.
- AMS will continue to provide measurements of the fluxes of secondary nuclei (Z>14) and expanding our knowledge of the cosmic rays.

The Break: A Feature of the Source or the Diffusion Coefficient?

16

Rigidity Scale Determination in AMS

- Calibration tests performed with proton beams at CERN before launch into space.
- After the flight, the position of the outer layer 1 and layer 9 are precisely aligned by using cosmic rays events to a stability of ~2 µm. The stability of inner tracker layers is a tenth of micron.
- Tracker misalignment is corrected by comparing the measured tracker rigidity and ECAL energy of positron and electron events. Coordinate resolution ~5-7 μm (3.2-3.7 TV MDR). Q. Yan and V. Choutko, *Eur. Phys. J. C* 83, 245 (2023).