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The Spallation Picture: Primary and Secondary Cosmic Rays

Primary nuclei (He, C, O, Ne, Mg, Si, Fe) are fused in stars through the α-process and injected
into the Galaxy in a supernova explosión.

Secondary nuclei (Li, Be, B, F, sub-Fe…) are produced by the
fragmentation of primary cosmic rays with the ISM (cold H and He).
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The Diffusion Picture: Primary and Secondary Cosmic Rays

Primary nuclei are contained in the Galaxy due to inhomogenous magnetic fields. Their

propagation is characterised by a diffusion coefficient ~ R−δ that modifies their spectrum.

Secondary nuclei are produced by an already diffused primary

spectrum, thus their spectrum is ‘doubly’ diffused ~ R−2δ .

Secondary-to-primary flux ratios reveal the dependence of the
diffusion coefficient with rigidity. 3



Measurement of the Fluxes of Nuclei with AMS

The AMS flux in the rigidty interval [𝑹𝒊, 𝑹𝒊 + ∆𝑹𝒊] is
computed as:

𝜙𝒊 =
𝑵𝒊

𝑨𝒊𝑻𝒊∆𝑹𝒊

• 𝑵𝒊 are the selected event counts corrected for

bin-to-bin migrations after background subtraction,

• 𝑨𝒊 is the effective acceptance including geometric

factor, selection and reconstruction efficiencies and 

nuclear interactions

• 𝑻𝒊 is the exposure time
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Charge Identification of Nuclei in AMS Analysis

• AMS has good charge measurement capabilities. Inner tracker resolution ~0.05-0.13 c.u. for

3≤Z≤9, Y. Jia et al., Nuc. Instr. And Meth. in Phys A 972, 164169 (2020).

• Background due to charge misidentification in non-interacting samples is neglible over

the whole rigidity range.
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Background Subtraction in AMS Analysis of Nuclei

• A residual background originates from nuclear interactions in the material between the inner 

tracker and the layer 1. A clean sample is obtained with template fits of charge distributions.

• The background from interactions on the little material above L1 has been estimated from 

simulation using MC samples generated according to AMS flux measurements.

• The error due to background subtractions typically amounts to few percent (<2% below 

100 GV and <6% below 3 TV).
6

In
n
e
r 

tr
a
c
k
e
r

L1

L9



Fragmentation Studies of Nuclei in AMS

• The absolute normalisation of the fluxes is largely dependent on the 

nuclear inelastic cross-section of cosmic rays with the material 

of the instrument (mostly carbon and aluminium).

• The inelastic cross sections of nuclei with carbon target has been 

measured by determining the tracker L1-L2 and L8-L9 nuclei 

survival prob., Q. Yan et al., Nuclear Physics A 996, 121712 (2020).
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Recap: Spectral Hardening in the Fluxes of Nuclei
see details in Dr. Valerio Formato’s talk

• The spectra of primary He, C and O harden in an indentical way above ~200 GV. 

• This hardening can be attributted to the injection spectrum at the source or in the

diffussion coefficient. 
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Fluxes of Lithium, Beryllium, Boron and Fluorine
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Secondary-to-Primary Flux Ratios

• All spectra of secondary nuclei harden above ~200 GV.

• Above 200 GV all three secondary-to-primary flux ratios harden, 

∆𝟐 − ∆𝟏= 𝟎. 𝟏𝟏 ± 𝟎. 𝟎𝟐. 

• This hardening is similar to that found for primary nuclei.

• AMS data support a spectral hardening of the fluxes of 

nuclei due to propagation with more than 𝟓𝝈 significance.

10

11 years 

AMS data

∝ 𝑅∆2∝ 𝑅∆1 ∝ 𝑅∆2∝ 𝑅∆1 ∝ 𝑅∆2∝ 𝑅∆1

∆𝟐∆𝟏



Recap: Two Classes of Primary Cosmic Rays
see details in Dr. Valerio Formato’s talk

• AMS data show that above 86.5 GV He, C and O have a distinct rigidity dependence than

Ne, Mg and Si: γHeCO = γNeMgSi + 0.032 ± 0.006.
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Secondary-to-Primary Flux Ratios
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• Above 175 GV, the F/Si ratio exhibits a hardening ∆𝟐
Τ𝑭 𝑺𝒊 − ∆𝟏

Τ𝑭 𝑺𝒊= 𝟎. 𝟏𝟑 ± 𝟎. 𝟎𝟔 compatible with 

the AMS result on the hardening of B/O flux ratio.

• Above 10 GV, the (F/Si)/(B/O) ratio is not flat but can be described by a single power law with 

𝜹 = 𝟎. 𝟎𝟓𝟓 ± 𝟎. 𝟎𝟎𝟔.

Rigidity [GV]
3 4 5 10 20 210 210´2

3
10

3
10´2

 
B

/O
F

/S
i

0.5

1
AMS

Fit

0.007± = 0.050d R>10 GV, 
d

kR

 away from zeros >7

11 years 

AMS data



Fluxes of Lithium, Beryllium, Boron and Fluorine
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• The measurement of the fluxes of secondary nuclei is paramount for the understanding of 

the physics of diffusion of cosmic rays in the galaxy.

• AMS has presented high-statistics measurments of the fluxes of secondary nuclei lithium, 

beryllium, boron and fluorine in the range 2 GV to 3 TV with detailed study of 

systematic errors.

• The fluxes of secondary nuclei consistently harden above ~ 200 GV and secondary-

to-primary flux ratios support the hypothesis of a spectral hardening related to a 

propapagation effect.

• AMS will continue to provide measurements of the fluxes of secondary nuclei (Z>14) and 

expanding our knowledge of the cosmic rays. 

Conclusions
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Back-up
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Rigidity Scale Determination in AMS

• Calibration tests performed with proton beams at CERN before launch into space. 

• After the flight, the position of the outer layer 1 and layer 9 are precisely aligned by using cosmic 

rays events to a stability of ~2 μm. The stability of inner tracker layers is a tenth of micron.

• Tracker misalignment is corrected by comparing the measured tracker rigidity and ECAL 

energy of positron and electron events. Coordinate resolution ~5-7 μm (3.2-3.7 TV MDR). Q. 

Yan and V. Choutko, Eur. Phys. J. C 83, 245 (2023).
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