

Cosmic-rays Light Isotopes

The abundances of light secondary cosmic ray isotopes (i.e. $\mathrm{D},{ }^{3} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be},{ }^{9} \mathrm{Be},{ }^{10} \mathrm{Be}$) provide unique clues for the understanding of their propagation in the galaxy.

Cosmic-ray Beryllium Isotopes

Beryllium nuclei are secondary cosmic rays.

They include three isotopes, two stable, ${ }^{7} \mathrm{Be}$ and ${ }^{9} \mathrm{Be}$, and one unstable, ${ }^{10} \mathrm{Be}\left(\mathrm{t}_{1 / 2} \approx 1.39 \mathrm{My}\right.$).
Stable secondaries as ${ }^{9}$ Be can propagate in the entire galactic halo while ${ }^{10}$ Be may decay to ${ }^{10} \mathrm{~B}$ before reaching the boundary of the Galaxy

The ratio of unstable-to-stable secondary cosmic rays ${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ is used to infer the Galactic halo size L, i.e. the galactic cosmic ray propagation volume.

Isotopes identification in AMS

$M=\frac{R Z}{\beta \gamma}$

$$
\frac{\Delta M}{M}=\sqrt{\left(\frac{\Delta R}{R}\right)^{2}+\left(\gamma^{2} \frac{\Delta \beta}{\beta}\right)^{2}}
$$

- Charge measurements: Tracker layers, UTOF, LTOF, RICH
- Rigidity ($R=P / Z$) measurement:

Tracker with $\boldsymbol{\Delta R} / \boldsymbol{R} \sim \mathbf{1 0} \%$ @ 10 GV

- β measurements:

	$\mathrm{E}_{\mathrm{k}} / \mathrm{n}$ range $(\mathrm{GeV} / \mathrm{n})$	$\boldsymbol{\Delta} \boldsymbol{\beta} / \boldsymbol{\beta}$ $(\mathrm{Z}>2, \beta=1)$
TOF	$(0.4,1.2)$	$\sim 1.5 \%$
RICH-NaF	$(0.8,4.0)$	$\sim 0.15 \%$
RICH-Aerogel	$(3.0,12)$	$\sim 0.05 \%$

Isotopic Abundances Measurement

Beryllium

- Isotopic abundances obtained from mass template fits carried out for each energy bin.
- Mass templates are based on Monte Carlo simulation and validated with data (using for example the geomagnetic cutoff to extract pure ${ }^{10} \mathrm{Be}$).

Top of the Instrument Flux

Contamination due $\mathrm{B}, \mathrm{C}, \mathrm{O} \rightarrow{ }^{7 / 9 / 10} \mathrm{Be}$

- The Top of the Instrument corrections are estimated from simulation tuned using direct AMS measurement of the fragmentation cross sections (Q. Yan et al. Nucl. Phy. A 2020).
- We used direct AMS data to validate the relevant isotopic branching ratios.

Beryllium Isotope Fluxes

- Based on 0.7 million beryllium events.

Beryllium Isotope Flux Ratios

\rightarrow First measurement of:

- ${ }^{9} \mathrm{Be} /{ }^{7} \mathrm{Be}$ flux ratios above $0.6 \mathrm{GeV} / \mathrm{n}$.
- ${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ flux ratios above $2 \mathrm{GeV} / \mathrm{n}$.

${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ flux Ratio and Halo Size

The AMS data can provide significant new constraints on the galactic halo size L

Cosmic-ray Lithium Isotopes

Both ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ are assumed to be of secondary origin.
Some studies show that the elemental lithium flux measured by AMS is higher than model prediction:

- Indication of primary source of ${ }^{7} \mathrm{Li}$?
(Boschini et al. APJ, 2020)
- Uncertainty in the production cross-section?
(Weinrich et al. A\&A, 2020; Maurin et al. A\&A,2022);

Boschini et al. APJ, 2020

Lithium Isotope Fluxes

Based on 0.9 million Lithium events.

Lithium Isotope Flux Ratios

Lithium Isotope Flux Ratios

Conclusions

- The measurement of the isotopic composition of light nuclei in cosmic rays is fundamental for the understanding of cosmic ray origin and propagation.
- AMS-02 measurements of cosmic-ray isotope fluxes based on 0.9 M Lithium and 0.7 M Beryllium events have been presented.
- Preliminary results of Li and Be isotope fluxes, and their ratios, have been shown in the energy range from $0.4 \mathrm{GeV} / \mathrm{n}$ to $12 \mathrm{GeV} / \mathrm{n}$, almost uncovered by previous measurements.
- The precision of the Beryllium and Lithium measurements can provide stringent constrain to the propagation models.

Thank you!

Isotopes identification in AMS

$$
\frac{\Delta M}{M}=\sqrt{\left(\frac{\Delta R}{R}\right)^{2}+\left(\gamma^{2} \frac{\Delta \beta}{\beta}\right)^{2}}
$$

Validation of Mass Templates

- Mass templates are obtained from Monte Carlo simulated events.
- Extensive checks of mass templates are done.

Example: check of mass template using the geomagnetic cutoff

Rervllinm Sluy Frror Break down

AMS ${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ flux Ratio Compared to Previous Measurements and Models

The AMS data provide significant new constraints on the galactic halo size L.

Lithium Templates

Lithium Isotope Fluxes

Based on 0.9 million lithium events.

(Preliminary data, refer to upcoming AMS publication)

Lithium Flux Errors Beak-down

RICH Performances on ISS

Response stability

Charge: after temperature corrections the detectors response is stable

- The residual Photon Yield variation $<2 \times 10^{-3}(95 \% \mathrm{CL})$ well within requirements (1%) Beta: Residual effect on beta are small enought to have no impact in the resolution

Resolution

Beta: $\mathrm{AgI}(\mathrm{NaF})$ resolution ~ 0.7 (1.2) per mil per Helium and better for higher Z
Charge: Resolution ~ 0.3 for Helium

