

Trento Institute for Fundamental Physics and Applications TeVpa 2023 11-15 Sept Napoli

Precision Measurement of Cosmic Deuterons with AMS-02 Francesco Dimiccoli On behalf of the AMS-02 Collaboration

AMS - 02

To date, it collected more than 200 billions of charged particles: e⁺, e⁻, p, pbar, nuclei...

AMS was installed on ISS in May 2011.

An unique TeV precision, accelerator-type spectrometer in space

Thanks to UTTPS, it will continue through the lifetime of ISS

Why Z=1&2 isotopes?

- Helium nuclei are the second most abundant nuclei in cosmic rays.
- D and ³He are mostly produced by the fragmentation of ⁴He: simpler comparison with propagation models wrt heavy nuclei
- Smaller cross section of He: D/⁴He and ³He/⁴He probe the properties of diffusion at larger distances
- dant Pb, TeV e odels s of p, 10 GeV e

• Different A/Z ratios of D and ³He allow to disentangle kinetic energy and rigidity dependence of propagation.

- AMS is composed by different sub-detectors for the redundant ID of the elements in CR
- The Mass is identified from the concurrent measurement of Rigidity, Velocity and Charge
- Mass resolution not good enough for event-by-event isotope ID -> Fit of distribution

TOF	$\sigma_{\beta}/\beta \sim 3\%$	0.2 < E _k < 1.1 GeV/n
RICH NaF	$\sigma_{\rm g}/\beta \sim 0.3\%$	0.7 < E _k < 3.7 GeV/n
	P L	N.
RICH Agl	σ _в /β ~ 0.1%	2.6 < E _k < 8.9
	P P	GeV/n

Light isotope measurements with AMS02

Isotope separation: $m = \frac{RZ}{\beta\gamma}$

The separation can be better achieved at constant velocity (not biased by geomag. cutoff)

Z=1

Z=2

The separation power depends on rigidity and velocity (β) resolutions

$$\left(\frac{\Delta m}{m}\right)^2 = \left(\frac{\Delta R}{R}\right)^2 + \gamma^4 \left(\frac{\Delta\beta}{\beta}\right)^2$$

- Low energies: dominated by the ΔR/R term (~10% almost constant for R<20 GV)
- **Higher energies:** γ^4 factor makes β resolution dominant

Fit of the mass with templates from MC

- MC templates tuned using data
- data driven estim. fragmentation from Z>1
- D'Agostini iterative method for bin-to-bin migration

General Parametrization of the velocity resolution (Z=1 - Agl)

The velocity response was modeled from high energy flight data: (R>50 GV) $\beta_{true} \approx 1$: distribution not influenced by isotopic composition **RICH (Agl):** $\textbf{Model: Gaus}_{core}(\Delta | \textbf{A}_{1}, \mu_{1}, \sigma_{1}) + \textbf{Gaus}_{res}(\Delta | \textbf{A}_{2}, \mu_{2}, \sigma_{2}) + \textbf{Gaus}_{tail}(\Delta | \textbf{A}_{3}, \mu_{3}, \sigma_{3}) + \textbf{H}^{*}(1 + \text{sign}(\Delta - 1))^{*}\textbf{x}$ 10⁵ double-gaussian χ^2 / ndf = 110.4 / 102 $3.885e+04 \pm 1.314e+03$ core 10⁴ 1 ± 0.0 0.0009792 ± 0.0000114 2.516e+05 ± 1.019e+05 $\sigma_{_{1}}$ and $\mu_{_{1}}$ are the only -168.2 ± 26.8 1.796e+04 ± 1.259e+03 free parameter of the 10³ σ_2/σ_1 1.6 ± 0.0 676.7 ± 137.3 σ_2/σ_1 model 3.005 ± 0.101 μ_-μ -0.000152 ± 0.000011 $\mu_2 - \mu_1$ -0.0001153 ± 0.0000651 10² other parameters are kept ISS data tail rigidly related to them at MC sim. (tuned) 10 all velocities E 0.99 1.01 1.02 1.04 1.03 $\Delta = (1/\beta_{meas})$ $1/\beta_{true}$ 7

Fit to data (on Mass distributions)

- NxN mass templates obtained changing σ_1 and μ_1 in a $\pm 20\%$ range
- Marginalization: To every template fit a weight is assigned: $w = exp(-\Box^2/2)$

10

10

10

10

-> p

⁴He ->

The two remaining free parameters (σ_1 and μ_1) are fixed bin-by-bin directly fitting the mass distributions

Z=1 and Z=2 Template fits

Isotope Fluxes

MC templates carry informations about:

- Detector Efficiency
- Bin-to-bin migration

It is possible to directly use them to calculate Acceptance and Unfolding factor to normalize the counts and obtain fluxes

Isotope Fluxes

MC templates carry informations about:

- Detector Efficiency
- Bin-to-bin migration

It is possible to directly use them to calculate Acceptance and Unfolding factor to normalize the counts and obtain fluxes

Comparison with Independent analysis (CIEMAT - Madrid)

- The results of the two groups are compatible within the respective error band estimations
- They are mostly within a ±2%
- The differences are dominated by systematics on the mass fit

Average Deuteron Ratios Fit

Ratios against rigidity factor out the solar modulation -> \sim Time independent

TIFPA Fit: A·
$$\left\{ \begin{array}{c} R^{\Box 1} & R < R_{0} \\ R^{\Box 2} & R > R_{0} \end{array} \right\}$$

D/⁴He vs ³He/⁴He Spectral index

Fluxes time dependence

- Time variation are visible above systematics only below ~ 5 GV
- ²H and ³He qualitatively follow the same time evolution of ⁴He
- More sophisticated analysis is needed

Time evolution of D vs ⁴He

Comparison of the relative time evolution of the flux of ²H and ⁴He

For each R bin, fitted to

$$\frac{\Phi(^2H)}{\Phi(^4He)} \sim \frac{<\Phi(^2H)>}{<\Phi(^4He)>} \times \big(\frac{\Phi(^4He)}{<\Phi(^4He)>}\big)^{\alpha}$$

a = 0 if the evolution of the two species is the same

Time evolution of D vs ⁴He

- Only fit statistical errors are shown
- For R<3.5 GV, both groups see hints of significative time dependence of the ratio
- For R>3.5 GV, the two species show evolution compatible within the errors

Summary

- AMS-02 measured the ³He and D fluxes using 10 years of data in the rigidity range from 2GV to 20 GV.
- **Below ~4GV:** solar modulation induces a time evolution of the the measured fluxes larger than the systematics of the measurement.
- **Above** ~4GV: the ratio of ³He and D to ⁴He are compatible with a power law function. The spectral indexe seem to be different for the two species.
- The fluxes time evolution are qualitatively similar to those of ⁴He. We observe hints of significantly different behaviour of the two species below ~3GV

... On track for drafting the paper

Properties of Cosmic Hydrogen and Helium Isotopes Measured by the Alpha Magnetic Spectrometer

AMS-02 Collaboration*

Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the fluxes of the isotopes of Hydrogen (¹H and ²H) and Helium (³He and ⁴He) are presented. The measurements are based respectively on 800 million ¹H nuclei in the rigidity range from 2.1 to 10 GV, on 16 million ²H nuclei in the rigidity range from 2.1 to 20 GV, on 85 million ⁴He from 1.9 to 20 GV and on 14 million ³He from 1.9 to 15 GV collected from May 2011 to May 2021. We observed that all the fluxes exhibit nearly identical variations with time. The relative magnitude of the variations decreases with increasing rigidity. The rigidity dependence of the ²H/⁴He flux ratio is measured for the first time and compared with the ³H/⁴He flux ratio one. Below 4 GV, both the ²H/⁴He and the ³H/⁴He flux ratios were found to have a significant long-term time dependence. Above 4 GV, they were found to be time-independent and their rigidity dependence is well described by a single power law $\propto R^{\Delta}$ with similar but significantly different spectral indexes (respectively $\Delta = -0.22 \pm 0.01$ for ²H/⁴He and $\Delta = -0.29 \pm 0.02$ for ³He/⁴He). The ²H/³He flux ratio was also measured for the first time and instead shows an almost flat rigidity dependence and no significant long-term time dependence, as expected from the similar origin of secondary ²H and ³He in cosmic rays.

Thanks for your attention

Backup

General Parametrization of the velocity resolution

Data/MC comparison at $\beta=1$

- R > 50 GV
- **TOF:** MC is completely off
- NaF: Data has tail of bad events
- Agl: MC is wider than data

1.01

 $\Delta = (1/\beta_{meas} - 1/\beta_{true})$

1.02

1.03

10-5

10-6

0.99

1.04

Trends for the free parameter were extracted as a function of:

OJan12 Dec12 Dec13 Dec14 Jan16 Dec16 Dec17 Dec18 Jan20 Dec20

General Parametrization of the velocity resolution (Z=1 - TOF)

double gaussian core + tail of bad reconstructed events (not in MC)

 $\sigma_{_{\rm 1}}$ is the only free parameter of the model

other parameters are fixed by the high velocity behaviour

bad rec. events modeled as third gaussian

General Parametrization of the velocity resolution (Z=1 - NaF)

double gaussian core + tail of bad reconstructed events (not in MC)

Time dep against "He summary

 $r_i(t) = \begin{cases} a_i & t < t_i \\ a_i + b_i(t - t_i) & t \ge t_i, \end{cases}$

errors: stat (fit) + stat (eff. corr)

Time evolution of ³He vs ⁴He (work in progress)

- Only fit statistical errors are shown
- For R<3.5 GV, both groups see hints of time dependence of the ratio
- For R>3.5 GV, the two species show evolution compatible within the errors