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Presentazione Di AMS (1)AMS - 02

AMS was 
installed on ISS  

in May 2011. 

An unique TeV 
precision, 

accelerator-type 
spectrometer in space

To date, it collected more than 200 
billions of charged particles: e+, e-, p, 

pbar, nuclei...

Thanks to UTTPS, 
it will continue 

through 
the lifetime of ISS 2



Why Z=1&2 isotopes? 

● Helium nuclei are the second most abundant 
nuclei in cosmic rays.

● D and 3He are mostly produced by the 
fragmentation of 4He:
simpler comparison with propagation models 
wrt heavy nuclei

● Smaller cross section of He: 
 D/4He and 3He/4He probe the properties of 
diffusion at larger distances 

4He
D

p

p

p

● Different A/Z ratios of  D and 3He allow to disentangle kinetic energy and rigidity 
dependence of propagation.
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L. ToF

U. ToF
• AMS is composed by different sub-detectors for

 the redundant ID of the elements in CR

• The Mass is identified from the concurrent 
measurement of Rigidity, Velocity and Charge

• Mass resolution not good enough for 
event-by-event isotope ID -> Fit of distribution

TOF σβ/β ~ 3%  0.2 < Ek< 1.1 GeV/n

RICH NaF σβ/β ~ 0.3% 0.7 < Ek < 3.7 GeV/n

RICH Agl σβ/β ~ 0.1% 2.6 < Ek< 8.9
GeV/n

TRD

Tracker

RICH

ECAL

Tracker L1

Tracker L9

Light isotope measurements
with AMS02 

4



Z=1 Z=2

β
TOF

 :  0.679-0.706 β
TOF

 :  0.814-0.842

p

D

3H

3He

4He

Isotope separation:  

The separation can be better achieved at constant velocity (not biased by geomag. cutoff)
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The separation power depends on rigidity and velocity (β) resolutions

● Low energies: dominated by the ΔR/R 
term (~10% almost constant for R<20 
GV)

● Higher energies: γ4 factor makes β 
resolution dominant

Fit of the mass with templates from MC 

● MC templates tuned using data

● data driven estim. fragmentation from Z>1

● D’Agostini iterative method for bin-to-bin 
migration

p

D

e+, π+
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General Parametrization of the velocity resolution (Z=1 - Agl)  

𝜎
1 

 and μ
1
 are the only 

free parameter of the 
model

other parameters are kept 
rigidly related to them at 
all velocities

double-gaussian 
core

tail

The velocity response was modeled from high energy flight data: (R>50 GV)  

β
true

≈1: distribution not influenced by isotopic composition
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RICH (Agl):



Fit to data (on Mass distributions)  

14.1<R[GV]<15.3

14.1<R[GV]<15.3

● NxN mass templates obtained changing σ
1
 and μ

1
 

in a 土20% range

● Marginalization: To every template fit a weight is 
assigned: w = exp(- ẟ2 / 2)

Fit  ẟ2

Marginalization 
over 𝜒2 matrix

best counts estim.

Local minimum

Centroid

Fit

D -> p

D

 
4He -> 3H

p

The two remaining free parameters (σ
1
 

and μ
1
) are fixed bin-by-bin directly 
fitting the mass distributions
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R: 1.92-2.15

R: 1.92-2.15

Z=1 and Z=2 Template fits
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MC templates carry informations about:

● Detector Efficiency

● Bin-to-bin migration

Isotope Fluxes
It is possible to directly use them to calculate 
Acceptance and Unfolding factor to normalize 
the counts and obtain fluxes

10 yrs AMS deuteron 
flux
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stat + syst. errors

Preliminary results. Please refer to the 
forthcoming publication in PRL



MC templates carry informations about:

● Detector Efficiency

● Bin-to-bin migration

Isotope Fluxes
It is possible to directly use them to calculate 
Acceptance and Unfolding factor to normalize 
the counts and obtain fluxes

10 yrs AMS 3He flux
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stat + syst. errors

Preliminary results. Please refer to the 
forthcoming publication in PRL
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Comparison with 
Independent analysis
(CIEMAT - Madrid)

2H

3He4He

● The results of the two groups 
are compatible within the 
respective error band 
estimations

● They are mostly within a 土2% 

● The differences are dominated 
by  systematics on the mass fit   

TIFPA 
CIEMAT
Time var. (TIFPA)

TIFPA 
CIEMAT
Time var. (TIFPA)

TIFPA 
CIEMAT
Time var. (TIFPA)
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1H

TIFPA 
CIEMAT
Time var. (TIFPA)
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Average Deuteron Ratios Fit

TIFPA Fit:  Aᐧ { Rẟ1  R<R
0

Rẟ2  R>R
0

CIEMAT Fit:  Aᐧ Rẟ 
 

CIEMAT
ẟ   -0.11 ± 0.01  

TIFPA

CIEMAT
ẟ   0.173 ± 0.012  

TIFPA

CIEMAT
ẟ   0.087 ± 0.008  

TIFPA

TIFPA 
CIEMAT
Time var. (TIFPA)

TIFPA 
CIEMAT
Time var. (TIFPA)

TIFPA 
CIEMAT
Time var. (TIFPA)

D/4He

D/3He

D/p

Ratios against rigidity factor out the solar modulation -> ~ Time 
independent
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D/4He vs 3He/4He Spectral index

∝RΔ

Δ = -0.29±0.01 

Δ = -0.12 ± 0.01 
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stat + syst. errors
Preliminary results. Please refer to the 
forthcoming publication in PRL



Fluxes time 
dependence

● Time variation are visible above 
systematics only below ~ 5 GV

●  2H and 3He qualitatively follow the 
same time evolution of 4He

● More sophisticated analysis is needed
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Preliminary results. Please refer to the forthcoming publication in PRL
Preliminary results. Please refer to the forthcoming publication in PRL



Time evolution of D vs 4He

Comparison of the relative time evolution 
of the flux of 2H and 4He

For each R bin, fitted to

ɑ = 0 if the evolution of the two species 
is the same

(TIFPA)
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Preliminary results. Please refer to 
the forthcoming publication in PRL

stat only errors



● Only fit statistical errors are 
shown

● For R<3.5 GV, both groups see 
hints of significative time 
dependence of the ratio

● For R>3.5 GV, the two species 
show evolution compatible 
within the errors
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Time evolution of D vs 4He

Preliminary results. Please refer to the forthcoming publication in PRL

stat. only errors



Summary
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… On track for drafting the paper

Thanks for your attention

● AMS-02 measured the 3He and D fluxes using 10 years of data in the rigidity range from 
2GV to 20 GV.

● Below ~4GV:  solar modulation induces a time evolution of the the measured fluxes 
larger than the systematics of the measurement.

● Above ~4GV: the ratio of 3He and D to 4He are compatible with a power law function. The 
spectral indexe seem to be different for the two species.

● The fluxes time evolution are qualitatively similar to those of 4He. We observe hints of 
significantly different behaviour of the two species below ~3GV



Backup
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General Parametrization of 
the velocity resolution  

Data/MC comparison at β=1

● R > 50 GV

● TOF: MC is completely off

● NaF: Data has tail of bad events

● Agl: MC is wider than data

TOF

NaF Agl

Pr.B1200
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Agl

(σ
-σ

1) 
/ 

σ 1

Trends for the free parameter were extracted as a function of:

TOF
%

(σ
-σ

1) 
/ 

σ 1

Energy Time

Agl

The stability of fit results 
were also 
checked to be stable 
against time
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General Parametrization of the velocity resolution (Z=1 - TOF)   

double gaussian core + tail of bad reconstructed events (not in MC)

TOF:

bad rec. events  
modeled as third 
gaussian

𝜎
1 

 is the only free parameter of 
the model

other parameters are fixed by 
the high velocity behaviour
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General Parametrization of the velocity resolution (Z=1 - NaF)  

double gaussian core + tail of bad reconstructed events (not in MC)

𝜎
1 

 is the only free parameter of 
the model

other parameters are fixed by 
the high velocity behaviour

RICH (NaF):

bad rec. events 
modeled as 
gaussian + power 
law tail 23



R=2.03 GV R=2.27 GV R=2.53 GV

R=2.82 GV R=3.83 GV R=6.68 GV

p/4He
3He/4He
D/4He

p/4He
3He/4He
D/4He

p/4He
3He/4He
D/4He

15 Feb 
2015

15 Feb 
2015

15 Feb 
2015

p/4He
3He/4He
D/4He

p/4He
3He/4He
D/4He

p/4He
3He/4He
D/4He

15 Feb 
2015

15 Feb 
2015 15 Feb 

2015

Time dep against 4He summary 

errors: stat (fit) + stat (eff. corr)
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PRELIMINARY



● Only fit statistical errors are 
shown

● For R<3.5 GV, both groups see 
hints of time dependence of 
the ratio

● For R>3.5 GV, the two species 
show evolution compatible 
within the errors

Time evolution of 3He vs 4He (work in progress)
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