

Is there evidence for gamma-ray emission from the Sagittarius dwarf galaxy?

Christopher Eckner (<u>eckner@lapth.cnrs.fr</u>) LAPP Annecy, CNRS, France 14th of September 2023

summarising work in progress in collaboration with Francesca Calore and Silvia Manconi TeV Particle Astrophysics 2023; 11th — 15th of September 2023, Napoli

Discovery and properties of the Fermi Bubbles

The Fermi Bubbles were uncovered as residual emission above expected gamma-ray emission components.

TeVPA 2023

Discovery and properties of the Fermi Bubbles

A closer look at the spectral properties of the residuals in the Fermi Bubbles region in the range from 1 to 10 GeV.

-> Very surprising: The hard spectrum extends even to the highest latitudes!

TeVPA 2023

soft:

Christopher Eckner, <u>eckner@lapth.cnrs.fr</u>

Is the cocoon emission fuelled by a satellite galaxy?

[slide credit: Oscar Macias, image credit: Aya Tsuboi (Kavli IPMU)]

Christopher Eckner, <u>eckner@lapth.cnrs.fr</u>

Is the cocoon emission fuelled by a satellite galaxy?

Crocker et al. [R. Crocker et al., Nature Astron. 6 (2022) 11] proposed to explain the cocoon's gamma-ray emission by emission from the Sagittarius dwarf galaxy.

[O. Macias et al., JCAP 09 (2019) 042]

[P. Ramos et al., A&A 666, A64 (2022)]

Is the cocoon emission fuelled by a satellite galaxy?

Crocker et al. [R. Crocker et al., Nature Astron. 6 (2022) 11] proposed to explain the cocoon's gamma-ray emission by emission from the Sagittarius dwarf galaxy.

A snapshot of the results of Crocker et al.

Two important findings:

- 1. Sagittarius' emission is significant ($> 5\sigma$) for almost all employed sky models.
- 2. The reconstructed spectrum is well explained by a population of millisecond pulsars (MSPs) in Sagittarius.

A snapshot of the results of Crocker et al.

Two important findings:

- **1.** Sagittarius' emission is significant ($> 5\sigma$) for almost all employed sky models.
- 2. The reconstructed spectrum is well explained by a population of millisecond pulsars (MSPs) in Sagittarius.

Does the significance of Sagittarius persist when we account for foreground mismodelling?

SkyFACT analysis vs. Crocker et al. – Results

Let us get to the point: Our final result employing background re-modulation to all components in comparison to the original work [R. Crocker et al., Nature Astron. 6 (2022) 11]:

- 1. Diffuse spectra broadly consistent between both works.
- We do not find evidence for the need of a prompt MSP-like spectrum between 1 to 10 GeV in the cocoon region.

```
TeVPA 2023
```

Adaptive template-fitting with skyFACT

We go beyond standard template-fitting by adding regularised image reconstruction as implemented in the software skyFACT.

Constraints on the modulation parameters by penalising likelihood function contribution on top of the Poisson likelihood: $\ln \mathscr{L} = \ln \mathscr{L}_P + \ln \mathscr{L}_R$.

Adaptive template-fitting with skyFACT

We go beyond standard template-fitting by adding regularised image reconstruction as implemented in the software skyFACT.

Constraints on the modulation parameters by penalising likelihood function contribution on top of the Poisson likelihood: $\ln \mathscr{L} = \ln \mathscr{L}_P + \ln \mathscr{L}_R$.

Analysis rationale and setup

We aim to directly investigate the findings of Crocker et al. by adopting most of their data selection and model composition; largest difference: 8 years -> 12 years of data.

 -10°

 -20°

 -40°

0°

 -10°

 -20°

 -30°

 -40°

Jalactic Latitude

Rationale:

Sequential fit to gamma-ray 1. data based on templates on the right.

Gas (H_2) Gas (H I) 0°

Baseline gamma-ray emission components*:

Sagittarius

 $30^{\circ} \ 15^{\circ} \ 0^{\circ} \ 345^{\circ}$

Galactic Longitude

-5

-6

-7

-8

-5

-6

-7

-8

 $30^{\circ} \ 15^{\circ} \ 0^{\circ}$

2. Enable iteratively spatial and spectral modulation of the initial template input.

Run skyFACT initialisation 3. twice: with and w/o Sagittarius template to assess significance.

*Templates show the optimised components of Run 8.

-5

-6

-7

-8

TeVPA 2023

Definition and results of our systematic scan

Now some details: The systematic fits are initialised with priors on the spectral and spatial morphology of the components as well as skyFACT hyper-parameters.

Components	Run 0	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	
Components	skyFACT hyper-parameters: $\begin{bmatrix} \lambda & \lambda' & \lambda'' \\ \eta & \eta' & \cdot \end{bmatrix}$									
4FGL (PLS)	$\left[\begin{array}{cc} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\begin{bmatrix} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{bmatrix}$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	
4FGL (ext)	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc} 0 \ 1 \ \infty \\ 6 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc} 0 \ 1 \ \infty \\ 6 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc} 0 \ 1 \ \infty \\ 6 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc} 0 \ 1 \ \infty \\ 6 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc} 0 \ 1 \ \infty \\ 6 \ 0 \ \cdot \end{array} \right]$	
π^0 (H I)	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{array}\right]$	$\begin{bmatrix} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{bmatrix}$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0 \\ 40 & 0 & . \end{array} \right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 44 & 0\\ 40 & 0 & . \end{array}\right]$	
π^0 (H ₂)	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\begin{bmatrix} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{bmatrix}$	$\begin{bmatrix} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{bmatrix}$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 44 & 0\\ 40 & 0 & . \end{array}\right]$	
IC	$\left[\begin{array}{cc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} \right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}1&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{rrr}1 & 16 & 0\\ 150 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}1 & 16 & 0\\150 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}1 & 16 & 0\\150 & 0 & \cdot\end{array}\right]$	
IGRB	$\left[\begin{array}{cc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} \right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{smallmatrix} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc}\infty & 400 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{smallmatrix} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc}\infty \ 400 \ \frac{1}{25}\\ 0 \ 0 \ \end{array}\right]$	
Sun&Moon	$\begin{bmatrix} \infty & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \infty & 0 & 0 \end{bmatrix}$	$\left[\begin{array}{cc} 10 & 16 & 0 \\ 150 & 0 \end{array}\right]$	$\begin{bmatrix} 10 & 16 & 0 \end{bmatrix}$		$\left[\begin{array}{cc} 10 & 16 & 0 \\ 150 & 0 \end{array}\right]$	$\left[\begin{array}{cc} 10 & 16 & 0 \\ 150 & 0 \end{array}\right]$	$\left[\begin{array}{cc} 10 & 16 & 0 \\ 150 & 0 \end{array}\right]$	$\left[\begin{array}{cc} 10 & 16 & 0 \\ 150 & 0 \end{array}\right]$	
FBs (flat)	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{c}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{c}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	_	$\left[\begin{smallmatrix} 0 & 10^4 & \infty \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & 400 & \frac{1}{25} \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	
FBs (structured)	—	—	-	C-	—	—	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	—	—	
Sgr	$\begin{bmatrix} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}$	$\begin{bmatrix} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}$			$\begin{bmatrix} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}$	$\begin{bmatrix} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}$	$\begin{bmatrix} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}$	$\begin{bmatrix} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}$	$\begin{bmatrix} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}$	
$-2\ln \mathcal{L}_{\rm base}$	309106	309227	309 <mark>210</mark>	297427	297469	297419	297014	295710	296010	
$-2\ln \mathcal{L}_{base+Sgr}$	308879	309013	309002	297350	297389	297357	296987	295690	295996	
$\mathcal{Z}_{ m Sgr}~[\sigma]$	13.6	13.1	12.9	6.9	7.0	6.0	3.0	2.2	1.5	

Fermi Bubbles are by default treated as uniform emission (restricted to their position) to avoid bias by common data-driven models that include the cocoon region. Only once exchanged for a structured template ([O. Macias et al., JCAP 09 (2019) 042]).

Definition and results of our systematic scan

Now some details: The systematic fits are initialised with priors on the spectral and spatial morphology of the components as well as skyFACT hyper-parameters.

Components	Run 0	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	$\operatorname{Run} 7$	Run 8
				skyFACT hy	$\lambda^{\prime\prime}$]				
4FGL (PLS)	$\left[\begin{smallmatrix} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{smallmatrix} \right]$	$\begin{bmatrix} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{bmatrix}$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{smallmatrix} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{smallmatrix} \right]$	$\begin{bmatrix} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{bmatrix}$	$\begin{bmatrix} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{bmatrix}$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$
4FGL (ext)	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc} 0 \ 1 \ \infty \\ 6 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$
π^0 (H I)	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$ \frac{1}{25} 400 0 40 0 \cdot $	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 44 & 0\\ 40 & 0 & \cdot \end{array}\right]$
π^0 (H ₂)	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} \right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\begin{bmatrix} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{bmatrix}$	$\frac{1}{25}$ 400 0 40 0 ·	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 44 & 0\\ 40 & 0 & \cdot \end{array}\right]$
IC	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$egin{array}{cccc} 1 & 16 & 0 \ 150 & 0 & \cdot \end{array}$	$\left[\begin{array}{rrr}1 & 16 & 0\\ 150 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}1 & 16 & 0\\150 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}1 & 16 & 0\\150 & 0 & \cdot\end{array}\right]$
IGRB	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{smallmatrix} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc}\infty & 400 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[{\begin{array}{*{20}c} \infty & 400 & 0 \ 0 & 0 & \cdot \end{array} ight]$	$\left[\begin{smallmatrix} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{smallmatrix}\infty&400&\frac{1}{25}\\0&0&\cdot\end{smallmatrix}\right]$
Sun&Moon	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} \right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{cc}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$egin{array}{cccc} 10 & 16 & 0 \ 150 & 0 & \cdot \end{array}$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$
FBs (flat)	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	-	$\left[\begin{smallmatrix} 0 & 10^4 & \infty \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & 400 & \frac{1}{25} \\ 6 & 0 & \cdot \end{smallmatrix}\right]$
FBs (structured)	—	-	-	C 4	-	-	$\left[\begin{array}{cc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} \right]$	—	—
Sgr	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$
$-2\ln\mathcal{L}_{\rm base}$	309106	309227	309210	297427	297469	297419	297014	295710	296010
$-2\ln\mathcal{L}_{\mathrm{base+Sgr}}$	308879	309013	309002	297350	297389	297357	296987	295690	295996
$\mathcal{Z}_{ m Sgr}$ $[\sigma]$	13.6	13.1	12.9	6.9	7.0	6.0	3.0	2.2	1.5

Run 0: Standard template fit (+ spectral re-fitting of all point-like sources) —> highest significance of Sagittarius; comparable to Crocker et al. results Run 5: Re-modulation of diffuse components **except for Fermi Bubbles** —> significance of Sagittarius more than halved!

Definition and results of our systematic scan

Now some details: The systematic fits are initialised with priors on the spectral and spatial morphology of the components as well as skyFACT hyper-parameters.

Components	Run 0	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8
				skyFACT hy	."]				
4FGL (PLS)	$\left[\begin{smallmatrix} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{smallmatrix} \cdot & 25 & 10 \\ \cdot & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix}\cdot&25&10\\\cdot&0&\cdot\end{smallmatrix}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$	$\left[\begin{array}{cc} \cdot \ 25 \ 10 \\ \cdot \ 0 \ \cdot \end{array}\right]$
4FGL (ext)	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc} 0 \ 1 \ \infty \\ 6 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 6 & 0 & \cdot \end{smallmatrix} \right]$
π^0 (H I)	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0 \\ 40 & 0 & \cdot \end{array} \right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$ \frac{1}{25} 400 0 40 0 \cdot $	$\begin{bmatrix} \frac{1}{25} & 400 & 0\\ 40 & 0 & . \end{bmatrix}$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 44 & 0\\ 40 & 0 & \cdot \end{array}\right]$
π^0 (H ₂)	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\begin{bmatrix} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{bmatrix}$	$\frac{1}{25}$ 400 0 40 0 ·	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & .\end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 400 & 0\\ 40 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{ccc} \frac{1}{25} & 44 & 0\\ 40 & 0 & \cdot \end{array}\right]$
IC	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\begin{bmatrix}1&16&0\\150&0&\cdot\end{bmatrix}$	$\left[\begin{array}{rrr}1 & 16 & 0\\150 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}1 & 16 & 0\\150 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}1 & 16 & 0\\150 & 0 & \cdot\end{array}\right]$
IGRB	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{array}{cc}\infty & 400 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[{\begin{array}{*{20}c} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{array} ight]$	$\left[\begin{smallmatrix} \infty & 400 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{array}{cc} \infty \ 400 \ 0 \\ 0 \ 0 \ \cdot \end{array} \right]$	$\left[\begin{smallmatrix}\infty&400&\frac{1}{25}\\0&0&\cdot\end{smallmatrix}\right]$
Sun&Moon	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{cc}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$egin{array}{cccc} 10 & 16 & 0 \ 150 & 0 & \cdot \end{array}$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$	$\left[\begin{array}{rrr}10&16&0\\150&0&\cdot\end{array}\right]$
FBs (flat)	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} \right]$	-	$\left[\begin{smallmatrix} 0 & 10^4 & \infty \\ 6 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & 400 & \frac{1}{25} \\ 6 & 0 & \cdot \end{smallmatrix}\right]$
FBs (structured)	-	-	-		-	-	$\left[egin{array}{ccc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} ight]$	—	—
Sgr	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0 \\ 0 & 0 & \cdot \end{array}\right]$	$\left[egin{array}{ccc} \infty & 0 & 0 \\ 0 & 0 & \cdot \end{array} ight]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$	$\left[\begin{array}{cc}\infty & 0 & 0\\ 0 & 0 & \cdot\end{array}\right]$
$-2\ln \mathcal{L}_{\rm base}$	309106	309227	309210	297427	297469	297419	297014	295710	296010
$-2\ln \mathcal{L}_{base+Sgr}$	308879	309013	309002	297350	297389	297357	296987	295690	295996
$\mathcal{Z}_{\mathrm{Sgr}}$ $[\sigma]$	13.6	13.1	12.9	6.9	7.0	6.0	3.0	2.2	1.5

Run 6 — 8: Introducing structure & spatial modulation of Fermi Bubbles + strict prior on their spectrum (derived hard-spectrum of [Fermi-LAT collab., ApJ 793 (2014) 64]) —> Sagittarius ceases to be significant

Christopher Eckner, <u>eckner@lapth.cnrs.fr</u>

Comparison Run 0 with Crocker et al. – Residuals

How do we compare/reproduce the original work [R. Crocker et al., Nature Astron. 6 (2022) 11] in Run 0; the standard template fit.

Residuals show a very similar structure in spatial morphology and overall magnitude. Likewise, comparable significance of emission from Sagittarius.

Comparison skyFACT Run 0 & 8

Run 0: Standard template fit.

Run 8: Spatial and spectral re-modulation of all diffuse components; varying level of constraints.

As expected and intended, skyFACT reduces the residuals to a minimum erasing most of their structure —> gamma-ray emission attributed to model components. Optimising the diffuse background marginalises Sagittarius' significance!

Summary and outlook

- Crocker et al. [R. Crocker et al., Nature Astron. 6 (2022) 11] proposed to connect the gamma-ray emission of the cocoon region within the Fermi Bubbles with the emission of millisecond pulsars in the Sagittarius dwarf galaxy due to intriguing spatial overlap.
- We probe this hypothesis via skyFACT; thereby improving on the commonly employed technique of template fitting to account for background mis-modelling.
- While we are able to reproduce the result of Crocker et al. in our model and a template fit, the evidence for Sagittarius' emission vanishes when fully accounting for background mis-modelling.

Ongoing studies:

We examine the MSP hypothesis specifically via skyFACT simulations and fits of such a population in the Sagittarius dwarf and pixel-count statistics as implemented in the 1pPDF method. Preliminary results of the latter study do not point towards significant evidence for such a scenario.