

Developing a theoretical model

for the gamma-ray emission from the Sun *E. Puzzoni*¹

¹ Lunar and Planetary Laboratory, University of Arizona
 ² Center for Astrophysics, Harvard & Smithsonian

F. Fraschetti^{1,2}, J. Kota¹, J. Giacalone¹

Credit: NASA

INTRODUCTION

Emission mechanisms

- **Inverse-Compton scattering**: cosmic-ray electrons interacting with solar photons (solar halo)
- **Bombardment by hadronic cosmic ray**s (mostly protons) interacting with solar gas (solar disk)
- Solar flares and coronal mass ejections

The existing theoretical model

Seckel, Stanev, and Gaisser model (1991)

Magnetic flux tubes can reverse incoming protons deep within the solar atmosphere, where they have an appreciable probability of producing outgoing γ -rays.

γ-ray flux is <u>greatly enhanced</u>!

Magnetic fields are crucial!

"Current technology is improving to the point that such a flux of GeV γ -rays should be detectable by the EGRET instrument of the Gamma Ray Observatory (GRO)"

- Fermi Gamma-ray Space Telescope
- High-Altitude Water Cherenkov Gamma-ray Observatory (HAWC)

INTRODUCTION

Credits: Tang et al. 2018

INTRODUCTION

Credits: Tang et al. 2018

INTRODUCTION

Credits: Tang et al. 2018

Credits: Tang et al. 2018

Credits: HAWC Collaboration (2022)

Magnetic field arcade

The equilibrium magnetic field is a potential arcade contained in the xy-plane

$$A(x, y) = B_0 \Lambda_B \cos\left(\frac{x}{\Lambda_B}\right) e^{-\frac{y}{\Lambda_B}}$$

And the magnetic field components are given by

$$B_{\chi}(x,y) = -B_0 \cos\left(\frac{x}{\Lambda_B}\right) e^{-\frac{y}{\Lambda_B}}$$
$$B_{\gamma}(x,y) = B_0 \sin\left(\frac{x}{\Lambda_B}\right) e^{-\frac{y}{\Lambda_B}}$$

 $B_0 = 10/e^{-\frac{6100}{\Lambda_B}}$: magnetic field strength at the base $\Lambda_B = L/\pi$: magnetic scale height

Credits: Oliver et al. 1993, Rial et al. 2013

B (G)

THEORETICAL MODEL

Turbulent magnetic field

$$B_{tot}(x, y, z) = B(x, y) + \delta B(x, y, z)$$

$$\delta B(x, y, z) = \sum_{n=1}^{N_m} A(k_n) \hat{\xi} e^{ik_n z'_n + i\beta_n}$$

$$10^{-1}$$

$$10^{-3}$$

$$10^{-5}$$

$$10^{-5}$$

$$0^{-5}$$

$$0^{-5}$$

$$0^{-5}$$

$$10^{-5}$$

$$0^{-7}$$

$$10^{-9}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-15}$$

$$10^{-11}$$

$$10^{-13}$$

$$10^{-15}$$

$$10^{-11}$$

$$10^{-13}$$

$$10^{-15}$$

$$10^{-11}$$

$$10^{-13}$$

$$10^{-15}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-13}$$

$$10^{-15}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-13}$$

$$10^{-15}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-11}$$

$$10^{-12}$$

$$10^{-11}$$

$$10^{-13}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^{-15}$$

$$10^$$

Particles initialization

 $v_x = v_0 \sin \theta \cos \varphi$ $v_y = v_0 \sin \theta \sin \varphi$ $v_z = v_0 \cos \theta$

$$\theta = \arccos(1 - 2\mathcal{R}[0,1]) \qquad \varphi = 2\pi \mathcal{R}[0,1]$$

- Different initial energies: 100 GeV 10 TeV
- $\sigma^2 = 0, 0.01, 0.1, 1$
- Injected in strips at <u>discrete distances</u> from the Sun surface

THEORETICAL MODEL

Credits: Puzzoni et al. 2023, in prep.

Particles initialization

THEORETICAL MODEL

NUMERICAL METHOD

Grid and boundaries

Grid resolution : 1000×1000

Particles are considered *escaped* when

- they leave the computational domain in the x y plane
- $z > 0.1 R_{sun}$ or $z < -0.1 R_{sun}$

1 test-particle proton/cell

(particle mover: Boris integrator in the PLUTO code)

Credits: Mignone et al. 2007

Credits: Puzzoni et al. 2023, in prep.

B (G)

NUMERICAL METHOD

Credits: Puzzoni et al. 2023, in prep.

Grid and boundaries

Grid resolution : 1000×1000

1 test-particle proton/cell

(particle mover: Boris integrator in the PLUTO code)

B (G)

We focus on the protons escaping from the Sun as they can produce gammarays that are observed at Earth

Particles filters: particles interacting with $v_y > 0$

$$t_{int}(y) = \frac{1}{n(y)\sigma_c v} < \Delta t$$

We focus on the protons escaping from the Sun as they can produce gammarays that are observed at Earth

Particles filters: particles interacting with $v_y > 0$

$$t_{int}(y) = \frac{1}{n(y)\sigma_c v} < \Delta t$$

We focus on the protons escaping from the Sun as they can produce gammarays that are observed at Earth

Particles filters: particles interacting with $v_y > 0$

$$t_{int}(y) = \frac{1}{n(y)\sigma_c v} < \Delta t$$

We focus on the protons escaping from the Sun as they can produce gammarays that are observed at Earth

Particles filters: particles interacting with $v_y > 0$

$$t_{int}(y) = \frac{1}{n(y)\sigma_c v} < \Delta t$$

NUMERICAL METHOD

Credits: Puzzoni et al. 2023, in prep.

Credits: Puzzoni et al. 2023, in prep.

Interacting vs escaping particles

Interacting vs escaping particles

Interacting vs escaping particles

Conclusions and outlooks

- Turbulence plays a crucial role in trapping GCRs
- Trapping efficiency depends on the particles energy
- Calculation of *γ*-ray flux
- Explore different parameters (Λ_B)

Developing a theoretical model

for the gamma-ray emission from the Sun *E. Puzzoni*¹

¹ Lunar and Planetary Laboratory, University of Arizona
 ² Center for Astrophysics, Harvard & Smithsonian

F. Fraschetti^{1,2}, J. Kota¹, J. Giacalone¹

Credit: NASA

GYRORADIUS

TURBULENCE EQUATIONS

Credits: Giacalone and Jokipii 1999

$$\delta \boldsymbol{B}(x, y, z) = \sum_{n=1}^{N_m} A(k_n) \hat{\boldsymbol{\xi}}_n \exp(ik_n z'_n + i\beta_n), \qquad (3)$$

where

$$\hat{\boldsymbol{\xi}}_n = \cos \, \alpha_n \, \hat{\boldsymbol{x}}'_n + i \, \sin \, \alpha_n \, \hat{\boldsymbol{y}}'_n \tag{4}$$

and

$$\begin{pmatrix} x'\\ y'\\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta_n \cos \phi_n & \cos \theta_n \sin \phi_n & -\sin \theta_n \\ -\sin \phi_n & \cos \phi_n & 0 \\ \sin \theta_n \cos \phi_n & \sin \theta_n \sin \phi_n & \cos \theta_n \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}.$$
(5)

$$A^{2}(k_{n}) = \sigma^{2} G(k_{n}) \left[\sum_{n=1}^{N_{m}} G(k_{n}) \right]^{-1}, \qquad (6)$$

where

$$G(k_n) = \frac{\Delta V_n}{1 + (k_n L_c)^{\gamma}}.$$
(7)

FERMI DATA

Credits: Tang et al. 2018

INTERACTION TIME

$$t_{int}(y) = \frac{1}{n(y)\sigma_c(m_pc^2\gamma)v}$$

Credits: Kafexhiu et al. 2014

Additional filter on particles: $t_{int} < \Delta t + (v_y > 0)$

PARTICLES MOTION

MAGNETIC FIELD ARCADE + TURBULENT COMPONENT

