Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz TeVPA 2023 14 September 2023, Napoli Italy

aufgrund eines Beschlusses des Deutschen Bundestages

The Compton Spectrometer and Imager (COSI)

Hiroki Yoneda Julius Maximilians Universität Würzburg, Germany

On behalf of the COSI Team

MeV gamma-ray astrophysics and its sensitivity gap

The origin of matter in the Universe

- Nucleosynthesis through nuclear gamma-ray line observations
- Anti-matter universe from e⁺e⁻ annihilation line
- MeV-scale DM matter indirect search

Extreme astrophysical environments

- Gamma-ray bursts
- Cosmic particle accelerators (BH, pulsar, binary etc)
- Low-energy cosmic-rays (IC, Bremsstrahlung, de-excitation gamma-ray lines)

The Compton Spectrometer and Imager (COSI)

- **Key capabilities**

 Cryogenically-cooled germanium detectors → line gamma-ray imaging with excellent energy resolution

 Instantaneous field-of-view is ~25% of the sky → all-sky monitoring (whole sky observation in a day)

Primary Science Goals of COSI

A. Uncover the origin of Galactic positrons

C. Gain insight into extreme environments with polarization

B. Reveal Galactic element formation

D. Probe the physics of multimessenger events

A. Uncover the origin of Galactic positrons

What is the origin of positrons?

- How many positron sources?
- Why is the bulge so bright?
 What is the nature of the disk emission?

Observations with COSI

- 511 keV image of the bulge and disk
- The disk-scale height measurement
- Search for individual point sources
- Line/continuum spectroscopy, e.g., red/blue shift, o-Ps continuum emission

-,

B. Reveal Galactic element formation

The tracer of the nucleosynthesis in the universe

Fe-60 (1.173&1.333 MeV, $\tau = 2.6 \times 10^6$ yr)

Core-collapsed supernovae (CCSNe)

Al-26 (1.809 MeV, $\tau = 7.2 \times 10^5$ yr)

massive star wind & CCSNe

Ti-44 (1.157 MeV, $\tau = 60$ yr)

Young SNe

Line gamma-ray imaging with COSI

- First all-sky image of Fe-60
- Improved Al-26 image, and correlation with Fe-60
- Search for Ti-44 sources (Cas A, Tycho, SN1897A, etc.)

C. Polarization & D. Multi-messenger events

Polarization measurements with COSI

Azimuthal angle distribution of scattered gamma rays provides the polarization degree/angle

 Measure the polarization of galactic black holes and AGNs with ~20 mCrab, and constrain the emission models (e.g., corona, jet)

Multi-messenger events

 With a large field-of-view, COSI will measure short transient events (+polarization).

 For a short GRB, its localization <2.5 deg will be reported within 1 hour.

Instrumental Design and Sensitivity

8 / 12

Operation and sky comage

The whole sky is covered in a single day

Ideal for transient event monitor (GRBs), all-sky imaging (511 keV, Al-26)

A low-earth orbit A near-equatorial orbit (to minimize SAA passages)

25% sky coverage in a single shot The satellite changes its pointing from 22 deg. North to 22 deg. South with 12-hour cycle

Galactic Longitude [deg] Daily exposure

/ 12

Current Status

Currently in Phase B

- passed Systems Requirements Review
- Preliminary Design Review, Feb. 2024

Payload

- GeDs: Received 3 64-strip GeD at UC Berkeley
- ASIC: Flight ASIC in fabrication
- Background Transient Observatory (studentlead project): finalizing the design

Spacecraft: based on previous missions (ICON)

Pipeline/Analysis tools: yearly released with the simulation dataset (COSI data challenge)

At UC Berkeley/SSL

Test cryostats for GeDs

GeD holder assembly

At Ortec (Oak Ridge)

Germanium procurement and processing 64 strip GeDs

At NASA/GSFC

Cryocooler

At Naval Research Lab

Detector interface board (DIB) with two 32-channel ASICs

BGO scintillators with SiPM readout

BTO detector design & heavy-ion beam test at Japan

COSI tools and yearly data challenges

Two softwares for data analysis and simulation

- MEGAlib: raw-level data analysis and simulation
- COSIpy: high-level data analysis (spectrum/image/polarization)

Every year, we perform data challenges, the data analysis of COSI based on simulation data

- 5 data challenges are planned until 2026 before the launch
- Data Challenge 1 (balloon data): <u>https://github.com/cositools/cosi-data-challenge-1</u>
- Data Challenge 2 (late-2023): 3-6 months of simulated satellite observations

Data $(E_m, \phi, \chi \psi)$

11 / 12

25

COSI collaboration and science team

University of California

- John Tomsick (Principal Investigator, UCB)
- Steven Boggs (Deputy PI, UCSD) **+**
- Andreas Zoglauer (Project Scientist, UCB) **♦**

Naval Research Laboratory

Eric Wulf (Electronics/BGO shield lead)

Goddard Space Flight Center

- Albert Shih (CHRS lead)
- Carolyn Kierans (Data pipeline co-lead) •
- Alan Smale (HEASARC/archiving lead)

Northrop Grumman

Science Team	Lead	Co-Leads	Technical Expert
Positrons	Carolyn Kierans (GSFC)	Thomas Siegert (JMU, Germany)	Thomas Siegert (JMU, Germany)
Nucleosynthesis	Thomas Siegert (JMU, Germany)	Chris Fryer (LANL)	Hiroki Yoneda (JMU, Germany)
GRBs	Eric Burns (LSU)	Steve Boggs (UCSD), Dieter Hartmann (Clemson)	Alyson Joens (UCB)
Galactic	Julien Malzac (IRAP, France)	Chris Karwin (GSFC)	Chris Karwin (GSFC)
Extragalactic	Marco Ajello (Clemson)	Fabrizio Tavecchio (INAF, Italy)	Jarred Roberts (UCSD)
Dark Matter	Tad Takahashi (IPMU, Japan)	Fabrizio Tavecchio (INAF, Italy), Shigeki Mastumoto (IPMU, Japan), Tom Melia (IPMU, Japan)	Thomas Siegert (JMU, Germany)

Institutions of Co-Investigators and Collaborators

- JMU/Wurzburg and JGU/Mainz, Germany
- Clemson University •
- Los Alamos National Laboratory +
- Louisiana State University +
- Yale University **+**
- IRAP, France **+**
- INAF, Italy +
- Kavli IPMU and Nagoya University, Japan **♦**
- NTHU, Taiwan **♦**
- University of Hertfordshire, UK
- Centre for Space Research, North-West University, South Africa **+**

