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Slow-roll inflation in F(R) Palatini gravity

New method which allows to derive inflationary predictions in
presence of higher order terms in the action

S =

∫
d4x

√
−g

[
1

2
F (R)− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
By means of a conformal transformation we obtain the Einstein
frame action

S =

∫
d4x

√
−g

[
R

2
− 1

2
gµν
E ∂µχ∂νχ− U(χ, ζ)

]

with ∂χ
∂ϕ =

√
1

F ′(ζ) ; U(χ, ζ) = V (ϕ(χ))
F ′(ζ)2

− F (ζ)
2F ′(ζ)2

+ ζ
2F ′(ζ)
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Slow-roll inflation in F(R) Palatini gravity

EoM obtained by varying ζ gives

2F (ζ)− ζF ′(ζ)− k(ϕ)∂µϕ∂µϕF
′(ζ)− 4V (ϕ) = 0

In slow-roll limit the equation reduces to

G (ζ) ≡ 1

4
[2F (ζ)− ζF ′(ζ)] = V (ϕ)

Cannot be solved for general F (R)

Trick: use ζ as computational variable using above equation as a
constraint

3 / 17



Beyond Slow-Roll

However F>2(R) theories do not provide a graceful exit from
inflation!

Using Friedmann equations one can show that

ζ̇ =
3Hϕ̇2F ′(ζ) + 3V ′(ϕ)ϕ̇

2G ′(ζ) + 3
2 ϕ̇

2F ′′(ζ)

The denominator has a pole whenever F (ζ) grows faster than ζ2

It can be shown that ϵH = 1 cannot be reached without hitting the
pole hence we cannot have graceful exit
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Beyond F(R): F(R,X)

This issue can be solved by extending the class of F (R) theories to
F (R,X ) where the X stands for the inflaton kinetic term
X = gµν∂µϕ∂νϕ

S =

∫
d4x

√
−g

[
1

2
F (R,X )− V (ϕ)

]
If we consider F (R,X ) = F (R − X ) we can rewrite the action in
the Einstein frame as:

S =

∫
d4x

√
−g

(R
2
− 1

2
gµν∂µϕ∂νϕ− U(ζ, ϕ)

)
Field ϕ is already canonically normalized!
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Beyond F(R): F(R,X)

Slow-roll computations proceed in the same way

We just need to keep in mind that ζ = R − X and that field ϕ is
already canonical

However in the strong coupling limit we get the same k-hilltop
prediction of standard F>2(R): r ∼ 0, ns = 1− k−1

k−2
2
Ne

The only difference is that now we need to set α such that
ϵ(ζ) > 1 at the local maximum

This sets αmin which is model dependent but always such that the
strong coupling regime is realized
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Beyond F(R): F(R,X)

New features for F (R,X ) that solve many of the issues of the
F (R) models:

1) G (ζ) = V (ϕ) is an exact equation that holds outside of
slow-roll as well

2) ζ̇ = V ′(ϕ)ϕ̇
G ′(ζ) is regular for any ζ > ζ0

3) We have graceful exit from inflation and evolution is much more
simple to study
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Quadratic F(R,X) and inflationary attractors

Now we focus on the class of quadratic

F (RX ) = 2Λ + ωRX + αR2
X

with RX = R − X

with this choice the EoM for ζ becomes

Λ +
ω

4
ζ = V (ϕ)

which upon substitution gives the Einstein frame potential

U(ϕ) =
V̄ (ϕ)

8αV̄ (ϕ) + ω2

with V̄ (ϕ) = V (ϕ)− Λ
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Quadratic F (R ,X ) and inflationary attractors

Requiring

positivity of U(ϕ)
consistency of the ζ’s EoM
F ′(ζ) > 0

only allows two configurations:

1) ω > 0,Λ ≤ 0,V (ϕ) ≥ 0
2) ω < 0,Λ > 0,V (ϕ) ≤ 0

In both cases α > ω2

8Λ for Λ ̸= 0

The vacuum solutions are given by ζ0 = − Λ
4ω , UΛ = Λ

8αΛ+ω2

In the strong field limit V (ϕ) → ±∞ the potential U(ϕ) reaches a
plateau at Uα = 1

8α
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ω > 0 configuration

V (ϕ)ω>0

U(ϕ)ω>0

Uα

ϕ

E
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In this case we have Uα > UΛ

Inflation happens at large ϕ close
to the Uα plateau

In this region the potential shape
can be approximated by
U(ϕ) ∼ Uα(1− ω2Uα

V (ϕ) ) which
generalizes the polynomial
α-attractors

Since for αV̄ >> ω2 we generate asymptotically flat potentials →
canonical fractional attractors



ω > 0 configuration

11 / 17

By choosing a monomial potential
V (ϕ) = λ

k!ϕ
k and taking the

strong coupling limit we get the
polynomial α-attractors prediction

r ∼ 0

ns = 1− k+1
k+2

2
Ne

The plot above shows the results for V (ϕ) = m2

2 ϕ2(blue) and

V (ϕ) = λ
4!ϕ

4(red)



ω < 0 configuration

V(ϕ)ω<0

U(ϕ)ω<0

Uα

UΛ

ϕ

E
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= −V̄ (ϕ)

In this case we have UΛ > Uα

Inflation happens at small ϕ close
to the UΛ plateau

In this region the potential shape
can be approximated by
U(ϕ) ∼ UΛ(1− UΛ

ΛUα
|V (ϕ)|) which

is a general version of hilltop
potentials

Since for αV >> ω2 we generate hilltop-like potentials
→ tailed fractional attractors



ω < 0 configuration
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By choosing a monomial potential
V (ϕ) = − λ

k!ϕ
k and taking the

strong coupling limit we get the
small r hilltop prediction

r ∼ 0

ns = 1− k−1
k−2

2
Ne

The plot above shows the results for k = 4(blue), 6(red), 8(green)
and V (ϕ) = −eλϕ(black)

Not every α is allowed in this case, α > αmin model dependent, but
always such that r < 10−5



ω < 0 configuration

V(ϕ)ω<0

U(ϕ)ω<0

Uα

UΛ

ϕ

E

14 / 17

In this case the Uα plateau can be chosen such that it matches the
current value of the cosmological constant

However α has to be set to very
large values

Unfortunately this usually spoils
the height of the potential at
small ϕ, and inflation happens at
too small scales

With an extreme tuning of Λ and α it is possible to keep UΛ well
separated from Uα → confirmation (not a solution!) of the problem



General behavior of F>2(RX )
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The model ω < 0 can be
considered an approximation for
all F>2(RX ) in the strong coupling
regime

For large α:
r ∼ 0, ns = 1− k−1

k−2
2
Ne

In that regime the potential in the region where inflation happens can
be approximated as a k-hilltop potential

F>2(RX ) also solve the issue of the horizontal asymptote: we don’t
need to fix α to enormous values, U(ϕ) asymptotically reaches 0



Recap

Palatini F (R) theories provide flat potentials independently of the
chosen model but they do not provide a graceful exit from inflation

Palatini F (RX ) theories provide both flat potential and graceful
exit

Quadratic theories produce classes of flat potentials that can be
classified as attractors given their general predictions

Quadratic theories can also be used as approximations for more
general F (RX ) in the strong coupling regime

F (RX ) exhibit viable inflation for a wide class of potentials V (ϕ)
and F (RX ) functions
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Thank you for the attention!
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Backup slides



Metric vs Palatini 2

2T. Koivisto and H. Kurki-Suonio, Cosmological perturbations in the
palatini formulation of modified gravity, Class. Quant. Grav. 23 (2006)

Metric formulation

Only DOF is the metric gµν , connection Γ is algebrically related to the
metric and is assumed to be the Levi-Civita one

S =

∫
d4x

√
−g

[
R

2
+Lm(gµν , ϕ, ∂ϕ)

]

Variation with respect to gµν yields EoM i.e. Einstein equations

Levi-Civita connection Γαβγ = 1
2g

αλ(gβλ,γ + gλγ,β − gβγ,λ)

Ricci scalar R = gαβRαβ depends on the metric through the



Metric vs Palatini

Palatini formulation

In Palatini we have both metric gµν and the connection Γ as DOF’s

S =

∫
d4x

√
−g

[
1

2
R(Γ) + Lm(gµν , Γ, ϕ, ∂ϕ)

]

Variation with respect to Γ yields EoM Γ = Γ(gµν , ϕ)

Variation with respect to gµν yields analogue of Einstein equations

Ricci tensor Rαβ(Γ) is built from connection only

What if we have F(R) in the action?



Metric vs Palatini

S =

∫
d4x

√
−g

[
1

2
F (R)− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]

F(R) term produces drastically different theories

In metric formulation there is
one more scalar degree of freedom

Bi-field inflationary configuration

In Palatini formulation this
scalar DOF is not present

Single field inflationary
configuration

Different inflationary predictions



Slow-roll inflation in F(R) Palatini gravity

Then U(χ, ζ) = G(ζ)
F ′(ζ)2

− F (ζ)
2F ′(ζ)2

+ ζ
2F ′(ζ) =

1
4

ζ
F ′(ζ) = U(ζ)

Notice that:

1) U(ζ) = ζ
4F ′(ζ) implies ζ > 0 since F ′(ζ) must be positive to

allow for correct sign of kinetic term (and Weyl transformation)

2) The Einstein frame potential U(ζ(χ)) is positive definite
regardless of the choice of the Jordan frame V (ϕ)

In order to compute the slow roll parameters we need the
derivatives of U(ζ) with respect to χ



Slow-roll inflation in F(R) Palatini gravity

Chain rule:

∂
∂χ f (ζ) =

∂ϕ
∂χ

∂ζ
∂ϕ

∂
∂ζ f (ζ) ≡ g(ζ)f ′(ζ)

with g(ζ) =
√

F ′(ζ)
k(V−1(G))

(∂G∂ζ
∂V−1

∂G )−1

Slow-roll parameters:

ϵ(ζ) = 1
2g

2(U
′

U )2

η(ζ) = gg ′U′+g2U′′

U

r(ζ) = 8g2
(
U′

U

)2
ns(ζ) = 1+ 2g

U2

(
g ′U ′U+gU ′′U−24gU ′2)

As(ζ) =
U3

12π2g2U′2

Ne =
∫ ζN
ζf

U
g2∂U/∂ζ

dζ


