Axion and FIMP Dark Matter in a U(1) extension of the Standard Model

### Sarif Khan

ITP, University of Goettingen

Talk at: TeVPA, Napoli

Based on: 2205.10150 [JCAP 09 (2022) 064]

**Co-author: Laura Covi** 







12<sup>th</sup> September, 2023

## **Problems in the SM**

- SM fails to explain neutrino mass and mixings.
- SM doesn't have a DM candidate.
- SM can not explain the observed baryon asymmetry.
- The origin of smallness of the  $\theta$ -parameter.





### **SM Particle Spectrum**



- Neutrino has all the properties mentioned before
- It can not account the whole amount of DM
- Relativistic in nature so no structure formation
- SM is incomplete, need new BSM physics to address DM

#### Strong CP Problem

The measurement of nEDM  $d_n$  will imply P, CP violation and could be related to the early matter-antimatter asymmetry.



 $\blacksquare$  nEDM puts bound on d<sub>n</sub> *i.e.*  $|d_n| < 1.5 \times 10^{-12} e \, {\rm GeV}^{-1}$  Abel et al, PRL 20

 $\sum L_{\theta} = \theta \frac{g_s^2}{32\pi^2} G\tilde{G} \text{ contribution to nEDM which comes out as } d_n \sim 1.2 \times 10^{-2} \theta e \, \text{GeV}^{-1}$ Pospelov, Ritz '99

 $\sim$  Comparing theoretical and the experimental values of nEDM, we obtain  $\theta < 10^{-10}$ 

The problem arises why the  $\theta$  parameter is so small



#### Gauge group and Particle content

#### Accidental Symmetry

Complete gauge group  $\longrightarrow G_{SM} \times U(1)_X \times \mathbb{Z}_2$ 

| Gauge<br>Group | Baryon Fields |         |         |         | Lep         | Scalar Fields |         |                |          |          |
|----------------|---------------|---------|---------|---------|-------------|---------------|---------|----------------|----------|----------|
|                | $Q^i_L$       | $u_R^i$ | $d_R^i$ | $L_L^e$ | $L_L^{\mu}$ | $L_L^r$       | $e_R$   | $\mu_R$        | $\tau_R$ | $\phi_h$ |
| $SU(2)_L$      | 2             | 1       | 1       | 2       | 2           | 2             | 1       | 1              | 1        | 2        |
| $U(1)_Y$       | 1/6           | 2/3     | -1/3    | -1/2    | -1/2        | -1/2          | -1      | -1             | -1       | 1/2      |
| $U(1)_X$       | m             | m       | m       | $n_{e}$ | n           | n             | $n_{e}$ | $\overline{n}$ | n        | 0        |
| $U(1)_{PQ}$    | 0             | 0       | 0       | -2a     | 0           | 0             | -2a     | 0              | 0        | 0        |

| Gauge                                | -                 |        | Scalars |            |            |            |            |                       |                     |
|--------------------------------------|-------------------|--------|---------|------------|------------|------------|------------|-----------------------|---------------------|
| Group                                | $N_1$             | $N_2$  | $N_3$   | $\psi_L$   | $\psi_B$   | XL         | XR         | Ø.                    | $\phi_2$            |
| $\mathrm{SU}(3)_c, \mathrm{SU}(2)_L$ | (1, 1)            | (1, 1) | (1, 1)  | (3, 1)     | (3, 1)     | (3,1)      | (3, 1)     | 1                     | 1                   |
| $U(1)_{X}$                           | - 30 <sub>1</sub> | n      | n       | $\alpha_L$ | $\alpha_R$ | $\beta_L$  | $\beta_R$  | $\alpha_L - \alpha_R$ | $\beta_L - \beta_R$ |
| $U(1)_{PQ}$                          | -2a               | 0      | 0       | -ea        | σ          | - äč       | -a         | 2a                    | 2a                  |
| $\mathbb{Z}_2$                       | -1                | 1      | 1       | 1          | 1          | -1         | - I        | 1                     | 1                   |
| No. of flavors                       | 1                 | 1      | 1       | No         | $N_{\psi}$ | $N_{\chi}$ | $N_{\chi}$ | 1                     | 1                   |

- KSVZ type axion model has been considered
- $\mathbb{Z}_2$ -symmetry forbids mixing among the exotic guarks and also stabilise the FIMP DM
- We have two DM namely axion and right handed neutrino which is odd under  $\mathbb{Z}_2$
- $U(1)_{PQ}$  symmetry is accidental and extracted from  $U(1)_X$  gauge symmetry

Gauge anomaly will put bound on the additional abelian gauge group charges Choice of  $\alpha_{\rm L}$  and  $\beta_{\rm L}$ 

### Choice of $\alpha_{\rm L}$ and $\beta_{\rm L}$

Depending on the sign of  $4n_x^2 - 1$ , different ranges for z are allowed, i.e.

- when  $n_{\chi} > 1/2$ , we must require  $z \le z_{-}$  or  $z \ge z_{+}$ ; as for large  $n_{\chi}, z_{\pm} \to \pm 1/2$  this reduces to the requirement |z| > 1/2 in the limit  $n_{\chi} \gg 1$ ,
- when  $n_{\chi} < \frac{1}{2}$ , we must require  $z_{-} \le z \le z_{+}$  and this reduces to |z| > 2 for  $n_{\chi} \ll 1$ .

Considered  $n_{\chi} > 1$  because  $n_{\chi} < 1 \longrightarrow \alpha_i \leftrightarrow \beta_i, N_{\psi} \leftrightarrow N_{\chi}, n_{\chi} \leftrightarrow 1/n_{\chi}$ .

Sets of Allowed Charge assignments

| $n_{\chi}$ | $\left z\right $ | y               | $\alpha_L$               | $\beta_L$   | $\beta_R$                | $\alpha_L - \alpha_R$    | $\beta_L-\beta_R$      | $n_{e}$                 | . <b>n</b>              | m                       |
|------------|------------------|-----------------|--------------------------|-------------|--------------------------|--------------------------|------------------------|-------------------------|-------------------------|-------------------------|
| 10         | 1                | $-\frac{3}{11}$ | $-\frac{19}{11}\alpha_R$ | $\alpha_R$  | $\frac{8}{11}\alpha_R$   | $-\frac{30}{11}\alpha_R$ | $\frac{3}{11}\alpha_R$ | $-\frac{3}{2}\alpha_R$  | $\frac{27}{22}\alpha_R$ | $-\frac{7}{66}\alpha_R$ |
| 10         | -1               | $-\frac{1}{3}$  | $-\frac{7}{3}\alpha_R$   | $-\alpha_R$ | $-\frac{4}{3}\alpha_R$   | $-\frac{10}{3}\alpha_R$  | $\frac{1}{3}\alpha_R$  | $-\frac{11}{6}\alpha_R$ | $\frac{3}{2}\alpha_R$   | $-\frac{7}{54}\alpha_R$ |
| 11         | 1                | $-\frac{1}{4}$  | $-\frac{7}{4}\alpha_R$   | $\alpha_R$  | $\frac{3}{4}\alpha_R$    | $-\frac{11}{4}\alpha_R$  | $\frac{1}{4}\alpha_R$  | $-\frac{3}{2}\alpha_R$  | $\frac{5}{4}\alpha_R$   | $-\frac{1}{9}\alpha_R$  |
| 11         | J                | $-\frac{3}{10}$ | $-\frac{23}{10}\alpha_R$ | $-\alpha_R$ | $-\frac{13}{10}\alpha_R$ | $-\frac{33}{10}\alpha_R$ | $\frac{3}{10}\alpha_R$ | $-\frac{9}{5}\alpha_R$  | $\frac{3}{2}\alpha_R$   | $-\frac{2}{15}\alpha_R$ |

$$n_e = -\frac{1+n_{\chi}}{2}(\beta_L - \beta_R), \ n = \frac{n_{\chi} - 1}{2}(\beta_L - \beta_R) \text{ and } m = -\frac{n_e + 2n}{9}$$
 7



Analytical Estimate of 
$$\Delta \theta$$
  
 $v_1 = v_2$  and  $|g| \sim 1 \implies \Delta \theta \sim \frac{1}{n_{\chi}!} \left[\frac{1+n_{\chi}^2}{2}\right]^{\frac{1+n_{\chi}}{2}} \left[\frac{F_a^2}{f_{\pi}m_{\pi}}\right]^2 \left[\frac{F_a}{M_{PL}}\right]^{n_{\chi}-3} \frac{(m_u+m_d)^4}{m_u^2 m_d^2}$   
Stirling's formula for  $n_{\chi} \gg 1$   
 $\Delta \theta \sim \frac{e^{n_{\chi}}}{(\sqrt{2})^{1+n_{\chi}}} \left[1 + \frac{1}{n_{\chi}^2}\right]^{\frac{1+n_{\chi}}{2}} \sqrt{\frac{n_{\chi}}{2\pi}} \left[\frac{F_a^2}{f_{\pi}m_{\pi}}\right]^2 \left[\frac{F_a}{M_{PL}}\right]^{n_{\chi}-3} \frac{(m_u+m_d)^4}{m_u^2 m_d^2}$   
Ruled out by nEDM  
 $n_{\chi} \leq 8 \implies \Delta \theta \geq 10^{-10}$   
 $n_{\chi} = 9 \implies \Delta \theta \sim 29.41 \times 10^{-10} \left[\frac{F_a}{10^{10} \text{GeV}}\right]^{10}$ 

Running of SU(3) coupling above the EQ mass scale

.

$$\implies \beta_3(\alpha_3) = -\frac{\alpha_3^2}{2\pi} \left[ 7 - \frac{2(N_{\psi} + N_{\chi})}{3} \right] \implies N_{\psi} + N_{\chi} \le 10$$



#### Axion relic density using misalignment:

$$\Omega_a h^2 \simeq 0.18 \, \theta_i^2 \left( \frac{F_a}{10^{12} \, \mathrm{GeV}} \right)^{1.19} \label{eq:GeV}$$

- $n_{\chi} = 10$  can not give us total amount for dark matter although not true for higher  $n_{\chi}$  values.
- $n_{\chi} = 12$  Can give right relic density for part of the parameter space.
- From the asymptotic freedom we can not take high value of  $n_{\chi}$ .
- We need a second compared to fill the gap to the total wir relic density.

## Axion coupling with $SU(2)_L$ and $U(1)_Y$ Gauge Bosons

→ Non - trivial contribution from  $SU(2)_L \times SU(2)_L \times U(1)_{PQ}$  anomaly :

 $\implies$  Non – trivial contribution from  $U(1)_Y \times U(1)_Y \times U(1)_{PQ}$  anomaly :

Combining W3 and BY we get exact cancellation of axion coupling with photons

Nevertheless a non-vanishing coupling arises from the pion-axion mixing giving Luzio et al '20

→ MADMAX can explore  $F_A$  in between  $(1.4 - 14) \times 10^{10}$  GeV which corresponds to  $(40 - 400)\mu eV$  axion mass → babyIAXO will explore even higher mass range i.e. from meV to eV range

$$\begin{split} \mathcal{L}_{WWA} &= \frac{g_{z}^{2}}{64\pi^{2}} \frac{W_{\mu\nu}^{i} W_{\mu\nu}^{\mu\nu}}{F_{a}} W_{\mu\nu}^{i} W_{i}^{\mu\nu} \\ &= \frac{g_{2}^{2}}{64\pi^{2}} \frac{A}{F_{a}} \tilde{W}_{\mu\nu}^{i} W_{i}^{\mu\nu} \, . \end{split}$$
$$\begin{aligned} \mathcal{L}_{AYY} &= (2Y_{Le}^{2} - Y_{e}^{2}) \frac{g_{1}^{2}}{32\pi^{2}} \frac{A}{F_{a}} \tilde{F}_{\mu\nu}^{Y} F^{\mu\nu} \, Y \\ &= -\frac{g_{1}^{2}}{64\pi^{2} F_{a}} \tilde{F}_{\mu\nu}^{Y} F^{\mu\nu} \, Y \, , \end{split}$$

 $a_5^2$  A  $\sim$  ....

$$\mathcal{L}_{A\gamma\gamma} = -\frac{e^2}{12\pi^2} \left( \frac{4m_d+m_u}{m_d+m_u} \right) \frac{A}{F_u} \bar{F}_{\mu\nu} F^{\mu\nu} \, . \label{eq:Lagrangian}$$

11

Hall et al' 09

## FIMP DM



 WIMP DM is easy to detect but no signal puts bound on its parameter space

- FIMP DM is difficult to probe in different experiments due to its feeble interaction
- This work has both Axion and FIMP type DM depending on choice one can dominate over other



- In the present model vevs are very heavy from the axion study
- To have TeV scale extra gauge boson and DM, their associated interactions become very suppressed

D

- In the present work, we can consider one of the RHN as DM which is odd under $\mathbb{Z}_2$
- $\longrightarrow$  Lagrangian for the DM candidate $N_1$ :  $\mathcal{L}_{N_1} = \frac{i}{2} \bar{N}_1 \gamma^{\mu} \left( \partial_{\mu} i g_X^{eff} Z_X \right) N_1 + \lambda \bar{N}_1^c N_1 \frac{\phi_1^{\dagger} \phi_2}{M_{Pl}} + h.c.$
- Boltzmann equation for the DM evolution:

$$\begin{split} \frac{dY_{Z_X}}{dz} &= \frac{2\,M_{\rm Pl}\,z\,\sqrt{g_\star(z)}}{1.66\,M_{h_1}^2\,g_s(z)} \left[ \sum_{i=1,2} \langle \Gamma_{h_i \to Z_X\,Z_X} \rangle_{TH}\,(Y_{h_i} - Y_{Z_X}^2) - \langle \Gamma_{Z_X \to N_1N_1} \rangle_{\rm NTH}\,Y_{Z_X} \right] \\ \frac{dY_{N_1}}{dz} &= \frac{2\,M_{\rm Pl}\,z\,\sqrt{g_\star(z)}}{1.66\,M_{h_1}^2\,g_s(z)} \left[ \sum_{i=1,2} \langle \Gamma_{h_i \to N_1N_1} \rangle_{Y_{h_i}} + \langle \Gamma_{Z_X \to N_1N_1} \rangle_{\rm NTH}\,Y_{Z_X} \right], \\ \int \frac{\int J_{Z_X}(p)}{\sqrt{p_\star^2 + M_{\pi}^2}} d^3p \, \int \left( \frac{J_{Z_X}(p)}{\sqrt{p_\star^2 + M_{\pi}^2}} d^3p \, \right) \, d^3p \, d^3p$$

Non-thermal average of gauge boson decay:

$$\langle \Gamma_{Z_X \to N_1 N_1} \rangle_{\text{NTH}} = M_{Z_X} \Gamma_{Z_X \to N_1 N_1} \frac{\int \sqrt{p^2 + M_1}}{\int f_{Z_X}(p)}$$

M relic density: 
$$\Omega_{N_1}h^2 = 2.755 \times 10^8 \left(\frac{M_{N_1}}{\text{GeV}}\right) Y_{N_1}(T_{\text{Now}})$$

 $N_1$  as FIMP

 $\rightarrow$  In the present work, we can consider one of the RHN as DM which is odd under  $\mathbb{Z}_2$ 

 $\implies \text{Lagrangian for the DM candidate } N_1: \ \mathcal{L}_{N_1} = \frac{i}{2} \bar{N}_1 \gamma^\mu \left( \partial_\mu - i g_X^{eff} Z_X \right) N_1 + \lambda \bar{N}_1^c N_1 \frac{\phi_1^{\dagger} \phi_2}{M_{D_1}} + h.c.$ 



- FIMP is produced from the decay of  $h_i$  and  $Z_X$
- Z<sub>X</sub> never reaches thermal equilibrium so we have determined its distribution function.



Higher values of FIMP DM mass are ruled out due to over production of DM

#### Neutrino Oscillation Parameters Range

|                                          |                                              |                             |                                   |                                            | NuFIT 5.2 (2022)              |     |
|------------------------------------------|----------------------------------------------|-----------------------------|-----------------------------------|--------------------------------------------|-------------------------------|-----|
|                                          |                                              | Normal On                   | bring (bost fit)                  | Inverted Ord                               | aring $(\Delta \chi^2 = 2.3)$ |     |
|                                          |                                              | $blp \pm l\sigma$           | 34 range                          | htp ±1 r                                   | 3 range                       |     |
|                                          | $\sin^2\theta_{\rm KE}$                      | 0.303+6.612                 | $0.270 \rightarrow 0.341$         | 0.303+4.011                                | $0.270 \rightarrow 0.341$     |     |
| data                                     | Ø12/*                                        | T1.41+0.75<br>_0.73         | $34.31 \rightarrow 35.74$         | $33.41_{-0.72}^{+0.76}$                    | $31.34 \rightarrow 35.74$     |     |
| 1                                        | $\sin^2\theta_{21}$                          | $0.572^{+0.059}_{-0.023}$   | $0.406 \rightarrow 0.020$         | 0.578 <sup>w0.026</sup>                    | $0.412 \rightarrow 0.623$     |     |
| 1                                        | 043/*                                        | 40.1 = 1.0                  | $39.6 \rightarrow 51.9$           | 49.5 -1.1                                  | $30.9 \rightarrow 52.1$       |     |
| $\theta_{13}$ Narrow                     | $\sin^2\theta_{\rm h3}$                      | 0.02203+0.00058<br>-0.00009 | $0.02029 \to 0.02294$             | 0.02219 <sup>+0.200001</sup>               | $0.02047 \rightarrow 0.02396$ |     |
| rango                                    | 011/"                                        | 8.54+0.11                   | $0.19 \rightarrow 0.99$           | 8.67_9.11                                  | $8.23 \rightarrow 8.00$       |     |
| Tange                                    | ber/*                                        | 107 <u>±40</u>              | $108 \rightarrow 404$             | 286.427                                    | $292 \rightarrow 300$         |     |
|                                          | $\frac{\Delta m_{21}^2}{10^{-4}~eV^2}$       | 7.0 +0.21                   | $0.82 \rightarrow 8.03$           | 7.41 <sup>+0.21</sup>                      | $0.82 \rightarrow 8.01$       |     |
|                                          | Amis 10-1 eV                                 | +2.511 +0.004               | $+2.428 \rightarrow +2.507$       | -2.498_0.011                               | $-2.581 \rightarrow -2.408$   |     |
|                                          |                                              | Normal Ordering (Sent fit)  |                                   | Inverteil Ordering $(\Delta \chi^2 = 6.4)$ |                               | = , |
|                                          |                                              | blp ±1.0                    | the sparage                       | htp ±1σ                                    | 3 r vange                     | 11  |
|                                          | 6411 <sup>2</sup> ff <sub>2.2</sub>          | 0.303*6.013                 | $0.370 \rightarrow 0.341$         | 0.303.444.012                              | $0.270 \rightarrow 0.341$     | -   |
|                                          | 011/*                                        | 33.4124.72                  | $31.31 \rightarrow 35.74$         | 33.11+0.75                                 | $31.31 \rightarrow 35.74$     |     |
| 4<br>7                                   | $\sin^2\theta_{33}$                          | 0.451+0.018                 | $0.408 \rightarrow 0.003$         | 0.50940.010                                | $0.412 \rightarrow 0.613$     |     |
| al a | 0++/"                                        | 42 224.0                    | $39.7 \rightarrow 51.0$           | 49.0 1 1                                   | $30.0 \rightarrow 51.5$       |     |
| 1                                        | $\sin^2 \theta_{11}$                         | 0.00225+0.0005s             | $0.02052 \rightarrow 0.02398$     | 0.02233+0.00058                            | $0.02048 \rightarrow 0.02416$ |     |
| ÷.                                       | @in/*                                        | 8.58 + 0.11                 | $8.23 \rightarrow 8.91$           | 8.57+0.11                                  | *.23 -+ 8.94                  |     |
| 1                                        | Scr/*                                        | $232^{+26}_{-26}$           | $144 \rightarrow 350$             | 276 22                                     | $194 \rightarrow 344$         |     |
|                                          | $\frac{\Delta m_{11}^2}{10^{-3}~{\rm eV}^2}$ | 7.4120.20                   | $6.82 \rightarrow 8.03$           | $7.41\substack{\pm0.21\\-0.20}$            | $6.82 \rightarrow 8.03$       |     |
|                                          | $\frac{\Delta m_{10}^2}{10^{-9}~{\rm eV}^2}$ | $+2.567^{+0.006}_{-0.027}$  | $\pm 2.427 \rightarrow \pm 2.590$ | =2.486 <sup>+0.021</sup>                   | $-2.570 \rightarrow -2.406$   |     |

# Associated model parameters are tightly constrained by the neutrino oscillation data

#### Neutrino mass



- Present model can generate oscillation parameters in the correct range by varying the model parameters
- The lightest eigenvalue among the active neutrinos is zero since the mixing involves only two RHN

### Conclusion

- Present model can accommodate neutrino mass with the allowed range of the neutrino oscillation parameters.
- > It also explain the smallness of the  $\theta$ -parameter and solves the strong CP problem naturally.
- > With asymptotic freedom, we could have a not so small contribution to  $\theta$  which corresponds to small  $F_a$  and may be measured in near future experiments.
- > Unless we choose very high value of  $n_{\chi}$  ( $\geq 12$ )which might ruin the asymptotic freedom of QCD coupling, axion can not accommodate whole amount of DM relic density.
- > ADMX, MADMAX, babyIAXO can explore the present model for axion mass range from  $\mu e V$  and above, even if axion is not the total DM density.
- One of the right handed neutrino can be a FIMP DM and fill the deficit in the total DM relic density.
- > RH FIMP DM is produced from the decay of thermal Higgses and non-thermal gauge boson.



**Back up Slides** 

Lagrangian
 
$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N^{Yuk} + \mathcal{L}_{BSM}^{Yuk}$$

 Full Lagrangian
  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N^{Yuk} + \mathcal{L}_{BSM}^{Yuk}$ 

 SM Lagrangian
 Yukawa for EQ

#### Lagrangian associated with the right handed neutrinos:

$$\mathcal{L}_{N}^{Yuk} = y_{\mu 2} \tilde{L}_{\mu} \phi_{h} N_{2} + y_{\mu 3} \tilde{L}_{\mu} \phi_{h} N_{3} + y_{\tau 2} \tilde{L}_{\tau} \phi_{h} N_{2} + y_{\tau 3} \tilde{L}_{\tau} \phi_{h} N_{3} + y_{e 2} \tilde{L}_{e} \phi_{h} N_{2} \frac{\phi_{1}}{M_{PL}} \longrightarrow \text{Dirac mass terms} \\ + y_{e 3} \tilde{L}_{e} \phi_{h} N_{3} \frac{\phi_{1}}{M_{PL}} + y_{22} N_{2} N_{2} \frac{\phi_{1} \phi_{2}}{M_{PL}} + y_{23} N_{2} N_{3} \frac{\phi_{1} \phi_{2}}{M_{PL}} + y_{33} N_{3} N_{3} \frac{\phi_{1} \phi_{2}}{M_{PL}} + h.c. \longrightarrow \text{RHN mass terms}$$

Terms associated with the exotic quarks:

$$\mathcal{L}_{BSM}^{Yuk} \; = \; \sum_{i,j=1}^{N_{\psi}0} \lambda_{ij} \, \bar{\psi}_L^i \psi_R^j \phi_1 + \sum_{i,j=1}^{N_{\chi}} y_{ij} \bar{\chi}_L^i \chi_R^j \phi_2 + h.c. \, .$$

Redefining the fields:

$$\psi_L \to e^{i\frac{a_1}{2v_1}}, \ \psi_R \to e^{-i\frac{a_1}{2v_1}}, \ \chi_L \to e^{i\frac{a_2}{2v_2}}, \ \chi_R \to e^{-i\frac{a_2}{2v_2}}$$

### Axion Density

- Misalignment mechanism gives us the axion density:
- PQ symmetry breaking happens before or during inflation then the axion field as massless field contains quantum fluctuations:
- These fluctuations of the axionic field contribute to the axion energy density:
- axion fluctuations generate an isocurvature perturbation (SDM) on top of the curvature perturbation given by the inflaton:
- Hubble parameter H\_inf and F\_a must satisfy the following relation to be consistent with the CMB data

$$\begin{split} \rho_{a}h^{2} \simeq 0.18\theta^{2} \left(\frac{F_{a}}{10^{12} \text{ GeV}}\right)^{1.19}, & \text{Preskill et al PLB 1983}\\ & \delta a = \frac{H_{\text{inf}}}{2\pi}, & \text{Kawasaki et al PLB 2018} \end{split}$$

$$\begin{split} \Omega_{a}h^{2} \simeq 0.18 \left[\theta_{i}^{2} + \left(\frac{H_{\text{inf}}}{2\pi F_{a}}\right)^{2}\right] \left(\frac{F_{a}}{10^{12} \text{ GeV}}\right)^{1.19}, \\ & S_{\text{DM}} = \frac{\Omega_{a}h^{2}}{\Omega_{\text{DM}}h^{2}} \frac{\delta\rho_{a}}{\rho_{a}}, \end{split}$$

$$H_{\rm inf} < 2.4 \times 10^7 \, {\rm GeV} \, \left( \frac{F_a}{10^{12} \, {\rm GeV}} \right)^{0.405}$$
.

Analytical estimate of FIMP DM

$$h_{i} \rightarrow N_{1}N_{1}$$
 decays contribute to the FIMP DM :  $\Omega_{N_{1}}^{FIMP}h^{2} \sim \frac{2.038 \times 10^{27}}{g_{s}\sqrt{g_{
ho}}} \sum_{i} \frac{M_{N_{1}}^{3}}{16\pi M_{h_{i}} F_{a}^{2}(n_{\chi}^{2}+1)}$ 

 $h_i \rightarrow Z_X Z_X \rightarrow N_1 N_1$  decays contribute to the FIMP DM :

$$\left(\Omega_{N_1}^{SF}h^2\right) \sim \frac{2.038 \times 10^{27}}{g_s \sqrt{g_{\rho}}} \, 2BR_{Z_X \to N_1 N_1} \sum_i \frac{M_{N_1} q_i^2 M_{h_i}}{32\pi q_2^2 (n_{\chi}^2 + 1)^2 F_a^2}$$

 $Z_X \rightarrow N_1 N_1$  branching analytically can be approximated as

$$2BR_{Z_X \to N_1 N_1} = \frac{2}{24} \frac{(n_{\chi} + 1)^2}{n_{\chi}^2 - 8n_{\chi} + 28/3} \to \frac{1}{12}, \text{ for } n_{\chi} \gg 1$$

In the DM scatter plots, we have considered contribution both axion and FIMP DM

## Neutrino Mass

 $\rightarrow$  Neutrino mass matrix in the basis  $(
u_L^c \quad N_R) \longrightarrow iggl( m_D^T \quad m_R iggr)$ 

→ Dirac mass matrix takes the form:

$$\begin{pmatrix} 0 & m_{L} \\ m_{L}^{c} & N_{R} \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & m_{L} \\ m_{D}^{T} & m_{L} \\ m_{d} = m_{dfi} = \begin{pmatrix} \frac{y_{k2}m_{k}}{2M_{p_{1}}} \frac{(y_{k1}^{R} + iy_{k1}^{f})vv_{i}}{2M_{p_{1}}} \\ \frac{y_{k2}v}{\sqrt{2}} \frac{(y_{\mu3}^{R} + y_{\mu3}^{f})v}{\sqrt{2}} \\ \frac{y_{k2}v}{\sqrt{2}} \frac{(y_{\mu3}^{R} + y_{\mu3}^{f})v}{\sqrt{2}} \\ \frac{y_{k2}v}{\sqrt{2}} \frac{(y_{\mu3}^{R} + y_{\mu3}^{f})v}{\sqrt{2}} \end{pmatrix},$$

→ Right handed neutrino mass matrix:

$$m_R = \begin{pmatrix} M_{22} & M_{23}^R + iM_{23}^I \\ M_{23}^R + iM_{23}^I & M_{33} \end{pmatrix},$$

Ω

 Neutrino mass is generated by Type-I Seesaw mechanism

Parameters range:

$$m_{\nu} = -m_D^T M_R^{-1} M_D$$

$$10^{-6} \text{ GeV} \le m_{dfi} \le 10^{-3} \text{ GeV}$$
,  
 $1 \text{ GeV} \le m_R \le 100 \text{ GeV}$ .