Imprint of non-thermal leptogenesis in CMB

TeV Particle Astrophysics (TeVPA)@2023

Dibyendu Nanda **Korea Institute for Advanced Study Date: 12.09.2023**

arXiv: 2210.14176

In collaboration with A. Ghoshal, A.K.Saha

Introduction and Motivation

Results

Conclusions

Connecting Inflation and Leptogenesis i) Inflaton directly couples to radiation ii) No direct inflaton-radiation coupling

• Introduction

Matter-antimatter asymmetry

What is the theoretical origin of the matter-antimatter asymmetry?

What are the experimental or observational aspects?

$$\eta = \frac{n_B}{n_{\gamma}} = (6.02 - 6.18) \times 10^{-10}$$

Observations from BBN ($T \sim 1 MeV$ **) and CMB (** $T \sim 1 eV$ **) agree with each other.**

We are trying to find possible imprints of non-thermal leptogenesis in cosmic microwave background.

Leptogenesis

Requirements of leptogenesis?

Generates neutrino mass, also explains matter-antimatter asymmetry: Elegant!!!

Type-I seesaw and Leptogenesis $\mathscr{L} = -Y_{\nu}\overline{L}\widetilde{H}N - \frac{1}{2}\overline{N}^{C}M_{N}N$ Fukugita and Yanagida 1986 $m_{\nu} = \frac{Y_{\nu}^2 v^2}{M_N} \approx 0.1 eV$

Type-I seesaw and Leptogenesis $\mathscr{L} = -Y_{\nu}\overline{L}\widetilde{H}N - \frac{1}{2}\overline{N^{C}}M_{N}N$ Fukugita and Yanagida 1986 $m_{\nu} = \frac{Y_{\nu}^{2}\nu^{2}}{M_{N}} \approx 0.1eV \quad \text{For } Y_{\nu} \approx \mathcal{O}(1), M_{N} \text{ have to be } 10^{13} - 10^{14} \text{ GeV}$ Leptogenesis

How can we produce such heavy RHNs in the early universe?

Thermal Leptogenesis

Non-thermal Leptogenesis

Non-thermal Leptogenesis

Type-I seesaw and Leptogenesis $\mathscr{L} = -Y_{\nu}\overline{L}\widetilde{H}N - \frac{1}{2}\overline{N^{C}}M_{N}N$ Fukugita and Yanagida 1986 $m_{\nu} = \frac{Y_{\nu}^2 v^2}{M_N} \approx 0.1 eV$ For $Y_{\nu} \approx \mathcal{O}(1)$, M_N have to be $10^{13} - 10^{14}$ GeV

- For successful thermal leptogenesis $M_N \ge 10^9 GeV$

Davidson, Ibarra, hep-ph:0202239 Buchmuller, Bari, Plumacher, hep-ph:0401240

These scenarios are inaccessible to the conventional laboratory experiments!!

It's possible to have low scale leptogenesis for some particular scenarios.

Pilaftsis, Underwood, hep-ph:0309342 Moffat, Pascoli, Petcov, Schulz, and Turner, 1804.05066

Why Non-thermal Leptogenesis?

It remembers its history!

Inflation and Reheating and CMB observables

Inflaton-dominated universe

Reheating

Radiation-dominated universe

$\rho_{r\rho}$: depends on interaction between inflaton and bath particles.

ρ_{end} : depends on the model of inflation.

Reheat temperature (T_{RH}): the maximum temperature of the radiation dominated universe.

Inflation and Reheating

α -attractor model:

$$V(\phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_{Pl}}}\right)^2$$

Independent parameters:

Dependent parameters:

 α, n

CMB Observables

2n

Spectral index: $n_{\rm c} = 1 - 6\epsilon_k + 2\eta_k$ **Tensor to scalar ratio:** $r = 16\epsilon_k$ $\epsilon = \frac{M_{Pl}^2}{2} \left(\frac{\partial_{\phi}^2 V}{V}\right)^2 \quad \eta = M_{Pl}^2 \frac{\partial_{\phi}^2 V}{V}$

$$V(\phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_{Pl}}}\right)^{2n}$$

Can we relate *n_s* **and r with the parameter of leptogenesis?**

ln

At horizon exit:

$$r = \frac{192\alpha n^2 \left(1 - n_s\right)^2}{\left[4n + \sqrt{16n^2 + 24\alpha n(1 - n_s)(1 + n_s)}\right]}$$

$$\left(\frac{k}{a_k H_k}\right) = \ln\left(\frac{a_{\text{end}}}{a_k} \frac{a_{\text{re}}}{a_{\text{end}}} \frac{a_0}{a_{\text{re}}} \frac{k}{a_0 H_k}\right) = 0$$

$$V(\phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_{Pl}}}\right)^{2n}$$

with the parameter of leptogenesis?

$$r = \frac{192\alpha n^2 \left(1 - n_s\right)^2}{\left[4n + \sqrt{16n^2 + 24\alpha n(1 - n_s)(1 + 1)^2}\right]^{2n}}$$

$$\ln\left(\frac{k}{a_k H_k}\right) = \ln\left(\frac{a_{\text{end}}}{a_k}\frac{a_{\text{re}}}{a_{\text{end}}}\frac{a_0}{a_{\text{re}}}\frac{k}{a_0 H_k}\right) = 0$$

Can we relate n_s and r

$$\phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_{Pl}}} \right)^{2n}$$

$$r = \frac{192\alpha n^2 \left(1 - n_s \right)^2}{\left[4n + \sqrt{16n^2 + 24\alpha n(1 - n_s)(1 + 1)} \right]^2}$$

$$\ln\left(\frac{k}{a_k H_k}\right) = \ln\left(\frac{a_{\text{end}}}{a_k}\frac{a_{\text{re}}}{a_{\text{end}}}\frac{a_0}{a_{\text{re}}}\frac{k}{a_0 H_k}\right) = 0$$

$$N_{\rm re} = \frac{4}{3\omega_{\rm re} - 1} \left[N_k + \ln\left(\frac{k}{a_0 T_0}\right) + \frac{1}{4} \ln\left(\frac{40}{\pi^2 g_*}\right) + \frac{1}{3} \ln\left(\frac{11g_{s^*}}{43}\right) - \frac{1}{2} \ln\left(\frac{\pi^2 M_P^2 r A_s}{2V_{\rm end}^{1/2}}\right) \right]$$

$$N_{\rm re} = \frac{4}{3\omega_{\rm re} - 1} \left[N_k + \ln\left(\frac{k}{a_0 T_0}\right) + \frac{1}{4} \ln\left(\frac{40}{\pi^2 g_*}\right) + \frac{1}{3} \ln\left(\frac{11g_{s^*}}{43}\right) - \frac{1}{2} \ln\left(\frac{\pi^2 M_P^2 r A_s}{2V_{\rm end}^{1/2}}\right) \right]$$

$$N_k = \frac{3\alpha}{4n} \left[e^{\sqrt{\frac{2}{3\alpha}} \frac{\phi_k}{M_P}} - e^{\sqrt{\frac{2}{3\alpha}} \frac{\phi_{\rm end}}{M_P}} - \sqrt{\frac{2}{3\alpha}} \frac{(\phi_k - \phi_{\rm end})}{M_P} \right]$$

$$\phi_k = \sqrt{\frac{3\alpha}{2}} M_{Pl} \ln(1 + \frac{4n + \sqrt{16n^2 + 24\alpha n(1 - n_s)(1 + n)}}{3\alpha (1 - n_s)})$$

$$r = \frac{192\alpha n^2 (1 - n_s)^2}{\left[4n + \sqrt{16n^2 + 24\alpha n(1 - n_s)(1 + n)} \right]}$$

$$N_{\rm re} = \frac{4}{3\omega_{\rm re} - 1} \left[N_k + \ln\left(\frac{k}{a_0 T_0}\right) + \frac{1}{4} \ln\left(\frac{40}{\pi^2 g_*}\right) + \frac{1}{3} \ln\left(\frac{11 g_{g^*}}{43}\right) - \frac{1}{2} \ln\left(\frac{\pi^2 M_P^2 r A_s}{2V_{\rm end}^2}\right) \right]$$

$$N_k = \frac{3\alpha}{4n} \left[e^{\sqrt{\frac{2}{3\alpha}} \frac{\phi_k}{M_P}} - e^{\sqrt{\frac{2}{3\alpha}} \frac{\phi_{\rm end}}{M_P}} - \sqrt{\frac{2}{3\alpha}} \frac{(\phi_k - \phi_{\rm end})}{M_P} \right]$$

$$\phi_k = \sqrt{\frac{3\alpha}{2}} M_{Pl} \ln(1 + \frac{4n + \sqrt{16n^2 + 24\alpha n(1 - n_s)(1 + n)}}{3\alpha (1 - n_s)}) \qquad N_{\rm re} \text{ depends on } \alpha.$$

$$r = \frac{192\alpha n^2(1 - n_s)^2}{\left[4n + \sqrt{16n^2 + 24\alpha n(1 - n_s)(1 + n)}\right]}$$

$$V(\phi) = \Lambda^{4} \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_{Pl}}}\right)^{2n} \qquad r = \frac{192\alpha n^{2} \left(1 - n_{s}\right)^{2}}{\left[4n + \sqrt{16n^{2} + 24\alpha n(1 - n_{s})(1 - n_{s})(1$$

Can we relate n_s and r

At horizon exit:

$$\ln\left(\frac{k}{a_k H_k}\right) = \ln\left(\frac{a_{end}}{a_k}\right)$$

$$N_{re} = \frac{4}{3\omega_{re} - 1} \left[N_k + \ln\left(\frac{k}{a_0 T_0}\right) + \frac{1}{4}\ln\left(\frac{40}{\pi^2 g_*}\right) + \frac{1}{3}\ln\left(\frac{40}{\pi^2 g_*}\right) + \frac{1}{3}\ln\left(\frac{40}{\pi^2 g_*}\right)\right]$$

$$N_{re} = -\frac{1}{3(1 + \overline{\omega}_{re})} \ln\left(\frac{\rho_{re}}{\rho_{end}}\right)$$

ıg.

> 1, HEP2017

• Important parameters are α and the parameters responsible for producing ρ_{re} .

Parameters involved so far

$\mathscr{L} \supset y_N \phi NN + y_R \phi XX + y_\nu \overline{\ell_L} HN$

Parameters involved so far

$\mathscr{L} \supset y_N \phi NN + y_R \phi XX + y_\nu \ell_I HN$

Results

 $\frac{d\rho_{\phi}}{dt} + 3H(\rho_{\phi} + p_{\phi}) = -\Gamma_{\phi}^{N}\rho_{\phi} - \Gamma_{\phi}^{R}\rho_{\phi}$

 $\frac{d\rho_R}{dt} + 3H(\rho_R + p_R) = \Gamma^R_{\phi}\rho_{\phi} + \Gamma_N\rho_N$

 $\frac{d\rho_N}{dt} + 3H(\rho_N + p_N) = \Gamma_{\phi}^N \rho_{\phi} - \Gamma_N \rho_{\rho_N}$

 $\frac{dn_{B-L}}{dt} + 3Hn_{B-L} = -\frac{\epsilon\rho_N \Gamma_N}{M_N}$

Boltzmann Equations: case I

- y_N and y_R will decide the amount of energy going into non-thermal RHN sector or thermal bath.
- The L asymmetry can be converted to B asymmetry as,

$$\frac{n_B}{s} \sim -\left(\frac{8}{23}\right) \times \frac{n_L}{s}$$

- The parameters involved so far are, y_N , y_R and M_N .
- The additional parameters will come from the neutrino mass diagonalization conditions.
- We used the well known Casas-Ibara parameterizations for nu-mass diagonalization which introduces the complex mixing angles in the theory.

 $\frac{d\rho_{\phi}}{dt} + 3H(\rho_{\phi} + p_{\phi}) = -\Gamma_{\phi}^{N}\rho_{\phi} - \Gamma_{\phi}^{R}\rho_{\phi}$

 $\frac{d\rho_R}{dt} + 3H(\rho_R + p_R) = \Gamma_{\phi}^R \rho_{\phi} + \Gamma_N \rho_N$

 $\frac{d\rho_N}{dt} + 3H(\rho_N + p_N) = \Gamma_{\phi}^N \rho_{\phi} - \Gamma_N \rho_{\rho_N}$

 $\frac{dn_{B-L}}{dt} + 3Hn_{B-L} =$ $\epsilon \rho_N \Gamma_N$ M_N

• In case of non-thermal leptogenesis: $Y_{B-L} \propto Br_{\phi \to NN} \times T_{RH}$

• For a fixed y_N , $Y_{B-L} \propto \frac{1}{y_R}$

$$M_{\Phi} = \frac{2\Lambda^2}{\sqrt{3\alpha}M_{Pl}}$$

Increasing α , will increase which will reduce $Br_{\phi \rightarrow NN}$.

Case-I: Results

_				 	 		
				1			
H							
H	H						
H							
						•	
							-
		•	•				
	>	C					
	-	-					-
	1						
	-	-					
	C						
	С						
H							
							-
	-						
							-
Z							
I							-
							-
H							
-		-	-				
-	1	-					-
1							
-							
þ							
							-
							-
							-
							-
							-
				- 11 I			-

Case-I: Results

 $\theta = 0.1 + 0.05 \text{ i}, M_N = 10^{13} \text{ GeV}$ 8×10⁻⁶ $\alpha = 1$ α=5 6×10^{-6} α=20 Br⊕→XX Z V NN Bre⊎ 2×10^{-6} 10^{-7} 10^{-5} 10^{-6} 10^{-4} \mathbf{y}_{R}

• y_N and y_R are correlated by the requirement of the correct order of baryon asymmetry.

26

• For a constant α , the predicted range of r, the scalar to tensor ratio is highly restricted.

Case-I: Results

Boltzmann Equations: Case II

 $\frac{d\rho_{\phi}}{dt} + 3H(\rho_{\phi} + p_{\phi}) = -\Gamma^{N}_{\phi}\rho_{\phi} - \Gamma^{P}_{\phi}\rho_{\phi}$ $\frac{d\rho_R}{dt} + 3H(\rho_R + p_R) = \Gamma^R_\phi \rho_\phi + \Gamma_N \rho_N$

 $\frac{d\rho_N}{dt} + 3H(\rho_N + p_N) = \Gamma_{\phi}^N \rho_{\phi} - \Gamma_N \rho_{\rho_N}$

$M_N = 10^{13}$ GeV, $\theta = 0.1 + 0.05$ i 10^{-9} $m Y_{B-L}$ (2Q) **Required** Y_{B-L} BICEP NCK + 10^{-10} 1 1 1 1 1 1 1 - T - T 1 10^{-8} 10^{-7} 10^{-6} y_N

Case-II: Results

29

- Here, we have discussed the impact of non-thermal leptogenesis on inflationary observables, n_s and r.
- The high scale RHN have been considered to create the required matter antimatter asymmetry.
- The source of those non-thermal heavy RHNs can be the inflatons itself and may have a direct correlation with the inflationary observables.
- We argue that such correlation can lead to distinct predictions for inflationary observables, n_s and r.
- For illustrations, we have considered the general form of α -attractor inflation model.

Conclusions

comments and Questions?

Decay widths of inflaton and RHN:

 $\Gamma_{\phi}^{N} = \frac{y_{N}^{2} m_{\phi}}{8\pi} \left(1 - \frac{4M_{N}^{2}}{m_{\phi}^{2}} \right)$

 $\mathbf{I}_{i} - \mathbf{I}_{i}$ ϵ_i $\Gamma_i + \overline{\Gamma_i}$

Covi, Roulet, Vissani

Backup Slides $\Gamma^R_{\phi} \approx \frac{y_R^2 m_{\phi}}{8\pi}$ $\Gamma_N \approx \frac{y_\nu^2 m_N}{16\pi}$ $\frac{N_j}{Y_{\nu j}}$ $Y_{\nu i}$

Out of equilibrium dynamics: Otherwise asymmetries will be washed out.

Sakharov's Conditions

<u>Baryon number violation</u>: required to evolve from $Y_{\Delta B} = 0$ to $Y_{\Delta B} \neq 0$.

<u>C and CP violation: interactions have to treat matter and anti-matter differently.</u>

The slow roll parameters:

$$\epsilon = \frac{M_{Pl}^2}{2} \left(\frac{\partial_{\psi}^2 V}{V}\right)^2$$

CMB observables:

$$n_s = 1 - 6\epsilon_k + 2\eta_k$$

 $\eta = M_{Pl}^2 \frac{\partial^2 V}{V}$

 $r = 16\epsilon_{k}$

 $H_k = \frac{\pi M_{Pl} \sqrt{r} A_s}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{$ $V(\varphi_k)$ $3M_{Pl}^2$ V

 $\frac{d\rho_{\phi}}{dt} + 3H(\rho_{\phi} + p_{\phi}) = -\Gamma_{\phi}^{N}\rho_{\phi} - \Gamma_{\phi}^{R}\rho_{\phi}$

 $\frac{d\rho_R}{dt} + 3H(\rho_R + p_R) = \Gamma^R_{\phi}\rho_{\phi} + \Gamma_N\rho_N$

 $\frac{d\rho_N}{dt} + 3H(\rho_N + p_N) = \Gamma_{\phi}^N \rho_{\phi} - \Gamma_N \rho_{\rho_N}$

 $\frac{dn_{B-L}}{dt} + 3Hn_{B-L} =$ $\epsilon \rho_N \Gamma_N$ M_N

$M_N = 10^{13}$ GeV, $\theta = 0.1 + 0.05$ i 10^{-9} $m Y_{B-L}$ (2Q) **Required** Y_{B-L} BIC +NCK 10^{-10} 10^{-8} 10^{-8} - I I 10^{-7} y_{N}

37