Substructure lensing in the era of JWST

In collab. with: Anna Nierenberg (UC Merced) Yi-Ming Zhong (U Chicago) Jo Bovy (UofT) Andrew Benson (Carnegie) Simon Birrer (Stony Brook) Tommaso Treu (UCLA)

> TeVPA 2023 Naples, Italy

Daniel Gilman University of Chicago

Structure formation and dark matter

DM required to explain the Universe on large and small scales

MUST PRODUCE DARK MATTER HALOS

Structure formation and dark matter

"Group-scale" halos $M \sim 10^{13} M_{\odot}$ -> usually contain massive elliptical galaxies

DARK MATTER HALOS CONTAIN AN ABUNDANCE OF SUBSTRUCTURE

 \bigcirc

If we were to zoom in on a groupscale halo....

More massive ($M > 10^8 M_{\odot}$) subhalos may host dwarf galaxies

More massive ($M > 10^8 M_{\odot}$) subhalos may host dwarf galaxies

Most subhalos are dark according to ΛCDM.

extremely dense

Challenges associated with detecting a turnover in the mass function (WDM) or collapsed halos (SIDM)

Baryons inside halos can complicate interpretation

Galax

Challenges associated with detecting a turnover in the mass function (WDM) or collapsed halos (SIDM)

Baryons inside halos can complicate interpretation

Most halos are dark. (Contain insufficient luminous matter to be detectable.)

Gravitational lensing: deflection of light by gravitational fields

Observed source

True source

Massive object

Strong lensing produces multiple images of a single source...

Strong lensing —> multiple images perturbed by dark matter halos

Observed source

True source

subhalos

Observed source

Vegetti et al. (2010)

G3

1 "

Figure adapted from Shajib et al. (2019)

Main deflector

(Lensed) quasar host galaxy

Multiple images of background quasar

Figure adapted from Shajib et al. (2019)

Main observable

Relative image magnifications (flux ratios)

-> local, highly sensitive probe of halos

magnifications $\propto \partial^2 \Psi / \partial x^2$

Projected (by Poisson Eqn.) density

Magnification cross section of 1 halo

Magnification cross section of 1 halo

We can test any theory that alters the internal and/or abundance of halos

- Warm dark matter: halos less abundant and less concentrated Gilman et al. (2019, 2020) (arXiv: 1901.11031, 1908.06983)
- Fuzzy dark matter: fewer halos abundant, quantum wave interference effects in halo density profiles Laroche, Gilman et al. (2022) (arXiv: 2206.11269)
 - Self-interacting dark matter: core formation and collapse change the lensing efficiency of halos Gilman et al. (2021, 2022) (arXiv: 2105.05259, 2207.13111)
 - **Inflation/early Universe**: enhanced/suppressed small-scale power impacts halo abundance/concentration Gilman et al. (2022) (arXiv: 2112.03293)
 - Massive free-floating primordial black holes: the most efficient lenses Dike, Gilman et al. (2022) (arXiv: 2210.09493)
 - Mixed warm/cold dark matter: aka lukewarm dark matter Keeley, Nierenberg, Gilman et al. (2023) (arXiv: 2301.07265)

Warm Dark Matter

Cold dark matter (CDM)

Warm dark matter (WDM)

Cold dark matter (CDM)

Warm dark matter (WDM)

Free-streaming imposes a length scale λ_{FS} on the problem

 $\lambda_{\rm FS} \sim c t_{NR} \propto V_{\rm rms} \Big|_{z\sim 3000}$

-> NO HALOS LESS **MASSIVE THAN** $M_{\rm min} \sim \rho_{\rm crit} \lambda_{\rm FS}^3$

Scale-free density fluctuations initialized in early Universe with WIMPs (CDM)

$\rho = 1$ (mean - density)

Warm dark matter (WDM)

Standard Model Neutrinos $M_{\rm min} \sim 10^{14} \, {\rm M}_{\odot}$

GeV-scale WIMPS $M_{\rm min} \propto 1 M_{\rm Earth}$

(some) Sterile Neutrino WDM $^{\prime}$ M $_{\odot}$ $M_{\rm min} \sim 1$ IU

Forward modeling approach applied to quads

Dark matter Halo mass function, theory halo density profiles

Compare with data

simulations per lens

10³

Fewer halos in WDM 10² \mathbf{M} Mp 10^{1} dogM dV **10**⁰ Less perturbation to lensed images 10^{-1}

*m*_{hm}

Adapted from Gilman et al. (2020)

CDM WDM

Mass function model calibrated from simulations (Lovell et al. 2014) (see also, Schneider et al. 2012, Bose et al. 2015) 10^{7} 10⁹ 10⁸ 106

 $M_{200} [M_{\odot}]$

 10^{10}

Structure forms later 20 in WDM concentration Halos less concentrated Less perturbation 8. to lensed images

(More concentrated halos act as more efficient lenses) Adapted from Gilman et al. (2020)

Constraints from 8 lenses with HST data

Free streaming length ~ 10 kpc

Can recast this as a constrain on sterile neutrino dark matter models see Zelko et al. (2022)

Self-interacting dark matter

Self-interacting dark matter (SIDM) -> only interacts with standard model through gravity -> preserves large-scale structure -> collisionless at high speeds $v \sim 1000 \text{ km s}^{-1}$ -> requires a velocity-dependent cross section

 $\overline{r_s}$

Core-collapsed halos are extremely efficient lenses

Now we are looking down the line of sight

Core-collapsed halos are extremely efficient lenses

arXiv: 2207.13111

Constraints on the collapse timescales with 11 quads

Results with existing data:

-> Existing data disfavors (likelihood ratios 5:1 to 9:1) models in which a majority of halos core collapse

-> Models with very large cross sections below 30 km/sec disfavored relative to CDM

THE FUTURE IS NOW: better data from JWST

THE PRESENT: narrow-line flux ratios from HST

Smaller source size increases sensitivity to perturbation by low-mass halos

Distortion ~ size of the source

JWST lensed quasar dark matter survey I: Description and First Results.

A. M. Nierenberg¹ *, R. E. Keeley¹, D. Sluse², S. Birrer³, D. Gilman^{4,5,6}, T. Treu^{7,8}, K. N. Abazajian⁹, T. Anguita^{10,11}, A. J. Benson¹², V. N. Bennert¹³, S. G. Djorgovski¹⁴, X. Du⁷, C. D. Fassnacht¹⁵, S. F. Hoenig¹⁹, A. Kusenko^{7,17}, C. Lemon¹⁸, M. Malkan⁷, V. Motta¹⁹, L. A. Moustakas²⁰, D. Stern²⁰, R. H. Wechsler^{21,22,23}

¹ University of California, Merced, 5200 N Lake Road, Merced, CA 95341, USA To appear on arXiv this week! ² STAR Institute, Quartier Agora - Allé du six Août, 19c B-4000 Liège, Belgium ³ Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Cycle 1 JWST program GO-2046 (PI Anna Nierenberg) Goal: isolate flux from compact (~5 parsec) emission around background quasar in 31 systems

Black hole

Accretion disk and "hot torus" -> intrinsic sizes of light-days to ~ 0.1 pc (micro-lensed like crazy)

-> SED dominated by emission at $\lambda < 2\mu m$

"Nuclear narrow-line region"

-> intrinsic size 10-100 pc (current data) -> OIII emission lines (see Nierenberg, Gilman et al. 2019)

"Warm torus"

Black hole Accretion disk and "hot torus" -> intrinsic sizes of light-days to ~ 0.1 pc (micro-lensed like crazy)

-> SED dominated by emission at $\lambda < 2\mu m$

"Nuclear narrow-line region"

-> intrinsic size 10-100 pc (current data) -> OIII emission lines (see Nierenberg, Gilman et al. 2019)

"Warm torus"

Black hole Accretion disk and "hot torus" -> intrinsic sizes of light-days to ~ 0.1 pc (micro-lensed like crazy)

-> SED dominated by emission at $\lambda < 2\mu m$

-"Nuclear narrow-line region"

-> intrinsic size 10-100 pc (current data) -> OIII emission lines (see Nierenberg, Gilman et al. 2019)

"Warm torus"

Black hole Accretion disk and "hot torus" -> intrinsic sizes of light-days to ~ 0.1 pc (micro-lensed like crazy)

-> SED dominated by emission at $\lambda < 2\mu m$

"Nuclear narrow-line region"

-> intrinsic size 10-100 pc (current data) -> OIII emission lines (see Nierenberg, Gilman et al. 2019)

"Warm torus"

Paper presents measurements for the first target: DES J0405-3308 observed in 4 MIRI filters from 1-10 μm

As seen by HST (composite):

As seen by JWST at $2\mu m$:

Paper presents measurements for the first target: DES J0405-3308 observed in 4 MIRI filters from 1-10 μm

As seen by HST (composite):

As seen by JWST at $5\mu m$:

Paper presents measurements for the first target: DES J0405-3308 observed in 4 MIRI filters from 1-10 μm

As seen by HST (composite):

As seen by JWST at $7\mu m$:

Adapted from Nierenberg, including Gilman et al. (in prep) -> appearing on arXiv this week!

Implications for constraints on Warm Dark Matter models

CDM

WDM

Current HST data with narrow-line flux ratios M

$M = 10^7 M_{\odot}$ JWST data to be obtained through GO-2046

0.90

Current HST data M with narrow-line flux ratios

$M = 10^6 M_{\odot}$ JWST data to be obtained through GO-2046

0.90
Forecasts for WDM from quasar lensing

-> corresponds to constraints on the half-mode mass at the scale of $10^7 M_{\odot}$ halos -> alternatively, constraints on the matter power spectrum on scales $k \sim 50 - 100 \text{ Mpc}^{-1}$

Implications for constraints on SIDM

Implications for constraints on SIDM

Takeaways:

Strong lensing provides an independent and powerful way to test the predictions of any dark matter model that alters halo abundance and concentration

JWST will soon deliver a larger sample of lenses with more precise measurements that probe lower halo down to 10^7 solar masses and below. -> will lead to unprecedented constraints on the nature of dark matter and a key test of the ΛCDM paradigm

