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Axions as a Solution to Small-scale Challenges of  ΛCDM

• Physically well-motivated (originally from QCD, also string theory)

• Core-cusp problem and “too big to fail”: Observed dwarf  galaxies show 
constant density cores at their centres, not high-density cusps 

• Missing satellites problem: ΛCDM predicts a significantly larger number of  
satellite subhalos in the local group than we observe

Image credit: Frédéric Bellaiche (2012)
Image credit: Elisa G. M. Ferreira (2021)



FDM Simulations and the Soliton Core + NFW Profile

Schive et al. 2014



Soliton Scaling Relations

Chan et al. 2022

• Core radius – mass relation

• Core radius – central density relation:

• Core – halo mass relation (Schive et al. 2014):



Probing FDM with LITTLE THINGS 

• Collaboration with G. Iorio using extensive analysis of  RCs on a select group of  
13 isolated, DM-dominated dwarf  galaxies

• Robust determination of  uncertainties with state-of-the-art 3D Barolo software

• One of the highest quality samples of dwarf galaxy RCs to date, ideal for FDM



Some Results from MCMCs
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Universality of  the Axion Mass
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Universality of  the Axion Mass
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Core Radius – Mass Relation

• A statistically significant positive 
correlation is observed, inconsistent 
with theoretical expectations

• A similar discrepancy occurs with 
the central density – radius relation

107 108 109 1010

Mc [MØ]

100

101

r c
[k

p
c]

5.00£
10 °

24
eV

1.00£
10 °

23
eV

4.00£
10 °

23
eV

8.00£
10 °

23
eV

1.60£
10 °

22
eV

3.20£
10 °

22
eV

105

106

107

108

M
§

[M
Ø
]



Core Radius – Mass Relation

• A statistically significant positive 
correlation is observed, inconsistent 
with theoretical expectations

• A similar discrepancy occurs with 
the central density – radius relation

107 108 109 1010

Mc [MØ]

100

101

r c
[k

p
c]

5.00£
10 °

24
eV

1.00£
10 °

23
eV

4.00£
10 °

23
eV

8.00£
10 °

23
eV

1.60£
10 °

22
eV

3.20£
10 °

22
eV

105

106

107

108

M
§

[M
Ø
]



Halo Mass Function Suppression 

• Our halos should not exist for axion 
masses below ~ 4.3 × 10!"# eV 

• Including observed LG galaxies 
makes the bound stronger, reaching 
~ 5.5 × 10!"" eV

• These bounds are inconsistent with 
the best-fit axion mass of  
~ 2 × 10!"# eV
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Conclusions

• Dwarf, isolated galaxies are ideal probes for testing fundamental properties of  DM

• The FDM model predicts that DM consists of  light, weakly-interacting wave-like 
particles that suppress small-scale structure and produce galactic cores

• While fits show excellent agreement with RC data, favoured axion masses are in 
tension with the strong suppression expected from the HMF (Catch-22 problem) 

• Including baryonic effects only exacerbates this tension (see extra slides)

• Furthermore, scaling relations favoured by the fits are inconsistent with model 
predictions, suggesting physics extrinsic to FDM



Comments and Future Directions

• Other bounds exist in the literature, 
e.g. Lyman-𝛼 forest, weak lensing, 
LSS-CMB etc. (see figure)

• One may restrict FDM to be only a 
small fraction of  all DM

• Baryonic feedback – driven CDM 
and self-interacting dark matter  
remain promising alternatives
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Thank you!



Backup Slides



Including Baryonic Effects

• Solving S-P equation under a 
background baryonic potential 
yields a modified soliton

• This solution is consistent with 
FDM simulations including baryons 
(See Bar et al. 18,Veltmaat et al. 20)

• We find that this translates to a     
≾ 15% systematic drop in FDM 
mass in the fits

• This only aggravates the problem 
further
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Baryonic Feedback

• The modified soliton profile has 
been found to be consistent with 
FDM simulations including 
feedback effects (Veltmaat et al. 20)

• Posterior distributions of  inner 
(logarithmic) slopes show overlap 
with the predictions from CDM 
simulations including feedback 
(Tollet et al. 16, Di Cintio et al. 14)
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Abundance Matching

• The Schive et al. 16 FDM 
parametrization is applied to the 
HMF using Behroozi et al. 19 for 
the SMF

• For the favoured axion mass values 
of  ~ 10!"# eV, the HMF is strongly 
suppressed, excluding most galaxies

• Masses in the ~ 10!"" eV range or 
greater may be compatible, but are 
disfavoured by the fits
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c - M Relation

• We apply the correction factor 
relative to CDM from the FDM 
simulations in Dentler et al. 22 to 
Dutton & Macciò 14

• Suppression observed in the c - M 
relation is largely consistent, with 
most data points clustering around 
the best-fit axion mass value
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Soliton + NFW Model

• Based on simulations, we adopt the soliton + NFW model with a transition 
point > core radius

• We parametrize the DM profile with four variables: axion mass (𝑚$), core mass 
(𝑀%), concentration parameter (𝑐) and halo mass (𝑀&)

• Baryonic components (gas + stars) are added to reproduce rotation curves



Schrödinger-Poisson Equation

+

+

↓

Real, massive bosonic scalar field (K-G equation. ) 

non-relativistic solution

minimally-coupled to gravity (Poisson equation)



Soliton Solution to the S-P Equation

• Searching for a quasi-stationary, phase-coherent solution

S-P spherical and stationary eq.

Bar et al. 2018

Scaled solutions of  S-P eq.



ΛCDM Challenges and FDM

• Wave behaviour causes core formation and suppression of  the formation of  
halos below a certain mass (due to power spectrum suppression)

• This makes FDM an attractive candidate to address small-scale strucure issues 
in ΛCDM (i.e. core-cusp problem and missing satellites)

Dentler et al. 2022



Central Density – Core Radius Relation

• Galaxies tend to cluster along the 
expected best-fit axion mass relation

• But similarly, the preferred slope of  
the relation differs significantly from 
the (steeper) expected one

• Agreement with Rodrigues et al. 17, 
Deng et al. 18 (green dots) further  
suggests astrophysical relevance 
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Core - Halo Mass Relation

• We impose the core-halo mass 
relation from Chan et al. 22 as a 
general constraint from simulations

• Range of  allowed masses is quite 
broad, spanning circa an order of  
magnitude in scatter

• We perform an analysis using the 
favoured best-fit axion mass (right)
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