
AGILE results and interpretation of the exceptional long gamma-ray burst GRB 221009A

L. Foffano, G. Piano, and M. Tavani, on behalf of the AGILE Collaboration

TeVPA2023 conference - Naples (Italy) - 12/09/2023

Launched on April 23, 2007

AGILE satellite

more than 16 years of operations in space

Bruno Rossi Prize 2012

Current operation status

Fully operational, nominal status, and active in:

- Gamma-ray astrophysics
 - Persistent and variable sources
 - Transient sources (GRBs, gamma-ray counterparts of GWs, neutrinos, FRBs)
- Solar physics (flares from the Sun)
- Terrestrial physics and space weather (TGFs)

Actively involved in the hunt for high-energy **electromagnetic counterparts of gravitational waves** during the current LIGO-Virgo-Kagra O4 observing run, started in May, 2023.

Probable satellite reentry in 2024?

Scientific mission of the Italian Space Agency (ASI), with programmatic and technical support of INAF and INFN.

AGILE satellite

more than 16 years of operations in space

Bruno Rossi Prize 2012

SuperAgile (SA) [18 – 60 keV]

> Anti-Coincidence (AC) [50 – 200 keV]

> > Silicon Tracker [0.03 – 50 GeV]

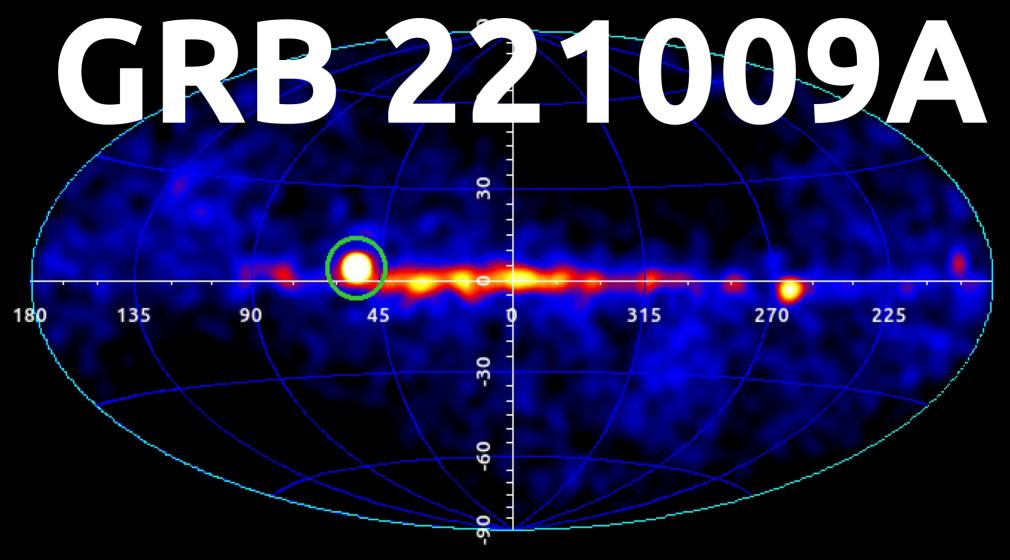
MiniCalorimeter (MCAL) [0.35 – 100 MeV] GRID Gamma-ray imaging detector **Large field of view** of $\sim 60^{\circ}$ for the γ -ray sky monitoring

Continuous monitoring of the sky!

Spinning observation mode ~200 passes/day

Unique combination of 2 co-aligned X-ray and γ-ray imaging detectors.

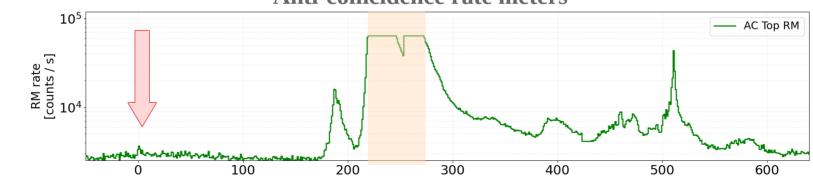
Scientific results


NASA-ADS counting >800 bibliographic references in ADS, of which >160 refereed articles

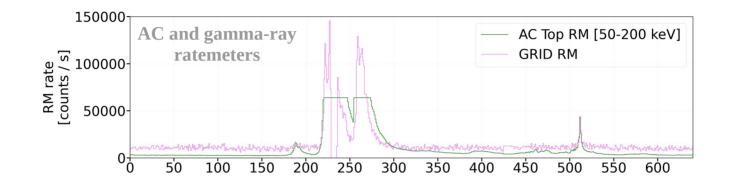
Fruitful monitoring of the gamma-ray sky: >230 ATel and >200 GCN

Latest AGILE results on GRBs

- AGILE MCAL second GRB catalog: comprehensive catalog of all GRB detected by MCAL from 2007 to 2020 (Ursi et al., ApJ 925, 2022)
- **GRB 190114C**: First GRB event detected at very high-energies by MAGIC participation to the multi-frequency paper [MAGIC Collaboration, Nature, 2019]
- GRB 190114C: dedicated analysis of the prompt phase with AGILE and Konus-Wind data [Ursi et al., ApJ, 2020]
- New Year's Burst GRB 220101A: event with the highest E_{iso} ever detected up to Jan 2022: analysis of the prompt phase using AGILE ratemeters data [Ursi et al., ApJ, 2022d]


AGILE gamma-ray sky during the GRB 221009A event

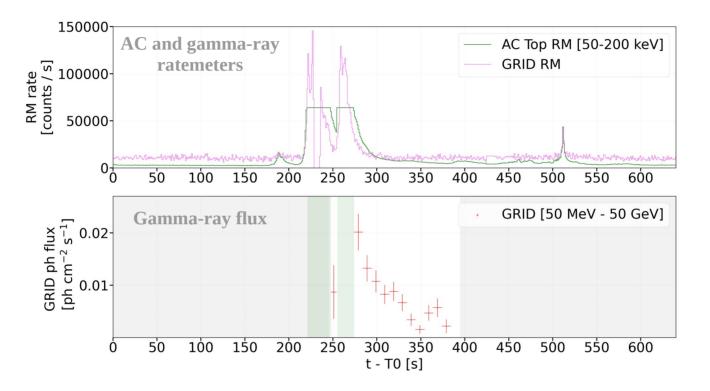
- AGILE triggered GRB 221109A on the weak precursor at T_0 of *Fermi*-GBM on October 9, 2022, $T_0 = 13:16:59.99$ UT
- AGILE was affected by saturation during the brightest phases of the GRB between [220, 270 s]


The initial event triggering at T_0 turned out to be a weak precursor to the brightest part of the GRB that occurred after 200-300 s.

Anti-coincidence rate meters

Results published in Tavani+2023, submitted

- When the AC saturates, it introduces a veto on the GRID ratemeters
- We excluded those time intervals from the current analysis


Luca Foffano

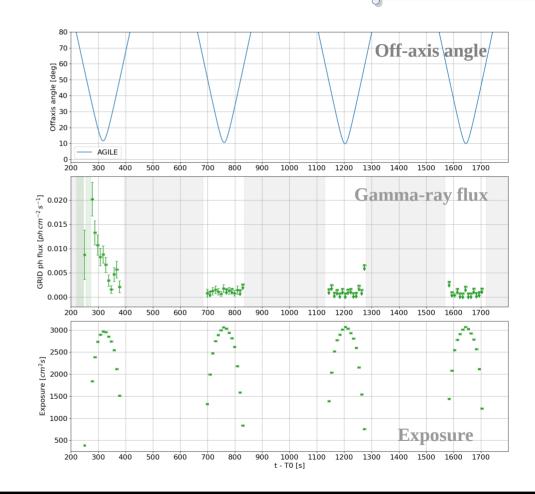
TeVPA2023 - 12/09/2023

8

Results published in Tavani+2023, submitted

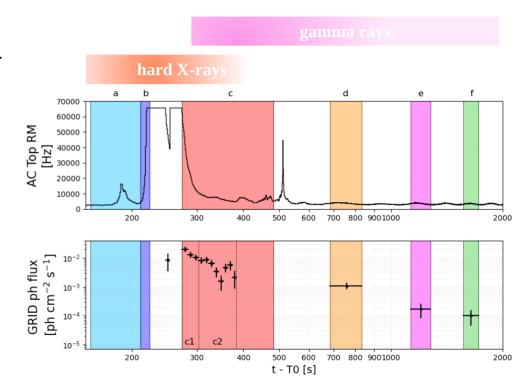
- When the AC saturates, it introduces a veto on the GRID ratemeters
- We excluded those time intervals from the current analysis

Luca Foffano

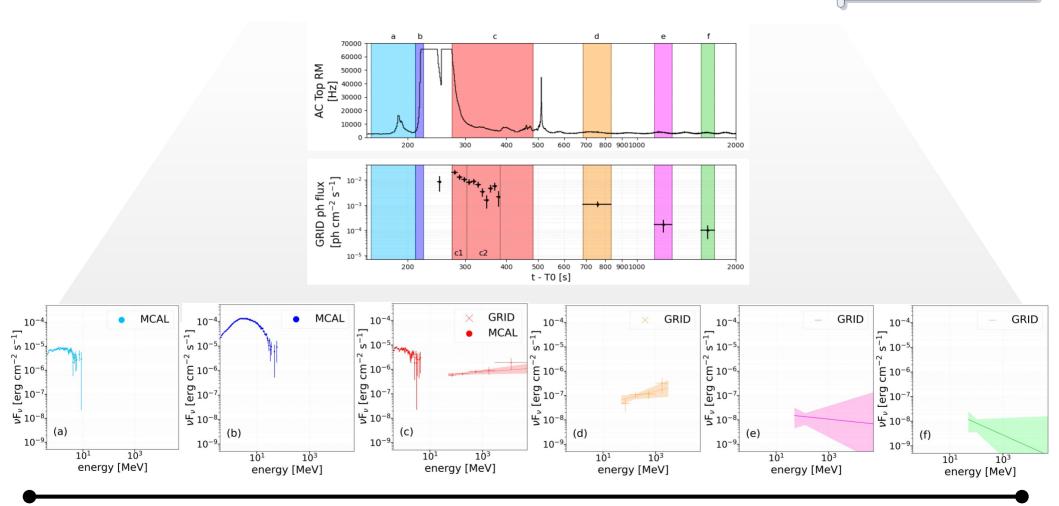

TeVPA2023 - 12/09/2023

Results published in Tavani+2023, submitted

- AGILE detectors recorded the most intense part of the GRB 221009A activity with no Earth occultations and good exposure
- Good time intervals are dominant and provide crucial scientific value!

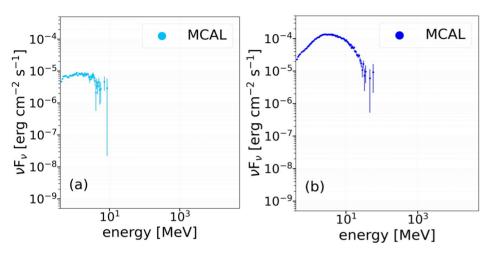


We defined **6 main time windows**:


- a) [155; 211] s \rightarrow first intense hard X-ray emission peaking at ~180 s.
- b) [211; 223] s → rapid hard X-ray flux increase to extremely large values that eventually saturated all ratemeters.
- c) [273; 482] s \rightarrow hard X-ray emission and 1st very intense **%**-ray episode.
- d) [684: 834] s \rightarrow 2nd GRID **\gamma-ray** exposure.
- e) [1129; 1279] $s \rightarrow 3^{rd}$ GRID **\gamma-ray** exposure.
- f) [1569; 1719] $s \rightarrow 4^{th}$ GRID **Y**-ray exposure.

Results published in Tavani+2023, submitted

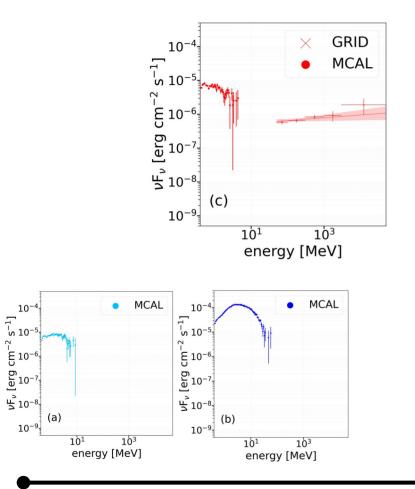
6


Luca Foffano

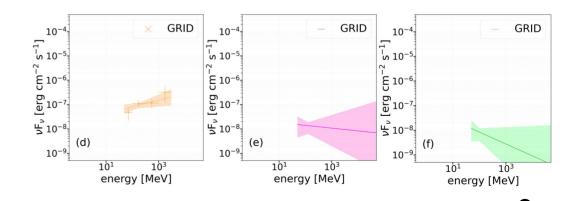
TeVPA2023 - 12/09/2023

12

Results published in Tavani+2023, submitted

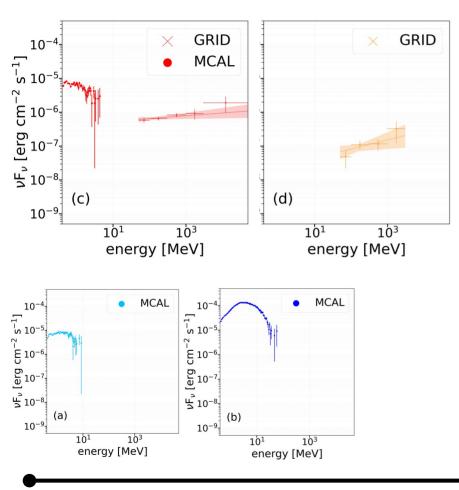


- MCAL spectrum shows a very rapid and rising hard X-ray flux
- low-energy spectral index is ∼1.
- The emission peaks at $E_{peak} \simeq 3 \text{ MeV}$

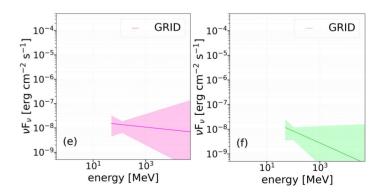


Results published in Tavani+2023, submitted

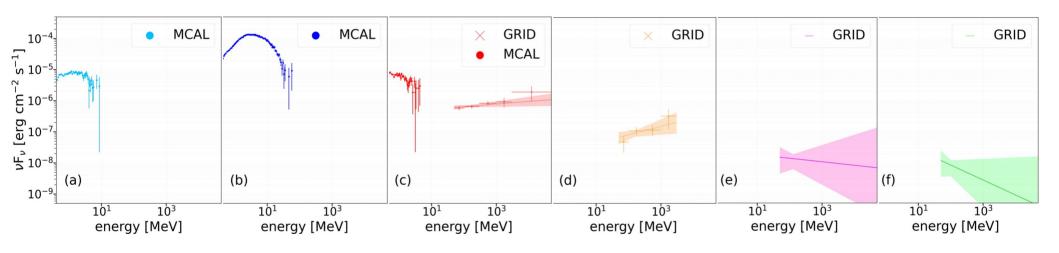
- Prominent hard gamma-ray emission produced with a spectrum quite different from the decaying MeV component
- Prompt emission is supplemented by an additional GeV component that we attribute to inverse Compton emission
- The beginning of the GRB afterglow



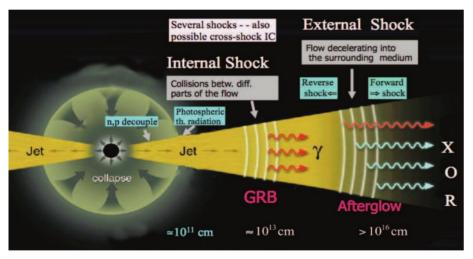
Luca Foffano


TeVPA2023 - 12/09/2023

Results published in Tavani+2023, submitted


• Spectral **hardening** in the GeV range as the overall flux decreases in the early phases of the afterglow

Luca Foffano



Results published in Tavani+2023, submitted

Relativistic fireball model

From P. Mészáros, M.J. Rees, Gamma-ray burst, 2014

- GRB afterglow emission due to synchrotron and Inverse Compton (IC) radiation produced by relativistic fireballs expanding in the surrounding medium (e.g. Sari et al. 1998; Sari & Esin 2001).
- External shock model describing the adiabatic expansion of a relativistic blast wave in a medium with **density** $n(r) = A r^{-s}$
- The shock front is expanding with bulk Lorentz factor $\Gamma(\mathbf{r})$, accelerating e- and e+ over a power-law energy distribution $N(\gamma) = N_0 \gamma^{-p}$
- A homogeneous magnetic field is assumed to be co-spatial with the accelerating particles
- The evolution of the blast waves is described as a function of time t after the initial event occurring at $T^* = T_0 + 226$ s (here we assume, for simplicity, the same reference time adopted in Cao et al. 2023).

Luca Foffano

How do AGILE data constrain the modeling?

Energy

[era]

1.5e+55

Gamma 0

700

s

0

n 0/A*

0.65

р

2.08

ee

0.05

eb

0.002

Event

GRB2210094

time start

[s]

22

time end

[s]

100

- We show here the GRB evolution in a reasonable scenario in a constant density medium s = 0
- A complete set of MWL information is essential for a comprehensive quantitative treatment of GRB 221009A (e.g., GRB 190114C [MAGIC+19])
- The AGILE-GRID data and LHAASO data are well described by IC emission of the afterglow of GRB 221009A in the considered time interval.
- A comprehensive exploration of the model fully applied to the data will be addressed in an upcoming publication [Foffano+ , in preparation]

10 ⁻⁵					GRB221009A		
10 ⁻⁶					•	Stand &	
10 ⁻⁷						N. C.	
10 ⁻⁷	Synchro	0	0				
10 ⁻⁹	LHAASCLHAASC	sorbed s	sorbed				
10 ⁻¹⁰ 10	² 10) ⁴	10 ⁶	10 ⁸ rgy [eV]	1010	1012	!

Conclusions

- GRB 221009A was extraordinary but also a very complex event
- AGILE obtained good data during the most important emission phases of GRB 221009A
- AGILE data useful to constrain the Inverse Compton emission at gamma rays
- Dramatic transition between prompt and afterglow emission with a phase of coexistence of MeV and GeV emissions
 - \rightarrow maybe two different emitting regions,
 - An inner and probably optically thick region,
 - An optically thin and relativistically expanding region

Thank you!