

Progress report of the ALPACA experiment

Yusaku Katayose (Yokohama National University) For the ALPACA Collaboration

TeVPA 2023 Napoli Italy, Sept. 14th 2023

sub-PeV γ-Ray Astronomy

 \star sub-PeV γ-ray astronomy developed by Tibet ASγ, HAWC, LHAASO

- First detection of sub-PeV γ-rays (Crab Nebula) Tibet ASγ, PRL (2019)
- Detection of PeVatron candidate (G106.3+2.7)*HAWC, ApJ (2020) Tibet ASγ, Nat. Astron. (2021)*

LHAASO Sky @ >100 TeV

- First detection of sub-PeV Galactic diffuse γ-rays *Tibet ASγ, PRL (2021)*
- Detection of dozen sub-PeV γ-ray sources *LHAASO*, *Nature (2021)*
 - \rightarrow All results by air shower arrays

in the northern hemisphere

The ALPACA Collaboration

M. Anzorena¹, D. Blanco², E. de la Fuente^{3,4}, K. Goto⁵, Y. Hayashi⁶, K. Hibino⁷, N. Hotta⁸, A. Jimenez-Meza⁹, Y. Katayose¹⁰, C. Kato⁶, S. Kato¹, I. Kawahara¹⁰, T. Kawashima¹, K. Kawata¹, T. Koi¹¹, H. Kojima¹², T. Makishima¹⁰, Y. Masuda⁶, S. Matsuhashi¹⁰, M. Matsumoto⁶, R. Mayta^{13,14}, P. Miranda², A. Mizuno¹, K. Munakata⁶, Y. Nakamura¹, C. Nina², M. Nishizawa¹⁵, R. Noguchi¹⁰, S. Ogio¹, M. Ohnishi¹, S. Okukawa¹⁰, A. Oshima^{5,11}, M. Raljevich², T. Saito¹⁶, T. Sako¹, T. K. Sako¹, J. Salinas², T. Sasaki⁷, T. Shibasaki¹⁷, S. Shibata¹², A. Shiomi¹⁷, M. A. Subieta Vasquez², N. Tajima¹⁸, W. Takano⁷, M. Takita¹, Y. Tameda¹⁹, K. Tanaka²⁰, R. Ticona², I. Toledano-Juarez^{21,22}, H. Tsuchiya²³, Y. Tsunesada^{13,14}, S. Udo⁷, R. Usui¹⁰, R. I. Winkelmann², K. Yamazaki¹¹ and Y. Yokoe¹

- ²Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz 8635, Bolivia.
- ³Departamento de Física, CUCEI, Universidad de Guadalajara, Guadalajara, México.
- ⁴Doctorado en Tecnologías de la Información, CUCEA, Universidad de Guadalajara, Zapopan, México.
- ⁵College of Engineering, Chubu University, Kasugai 487-8501, Japan.
- ⁶Department of Physics, Shinshu University, Matsumoto 390-8621, Japan.
- ⁷Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan.
- ⁸Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan.
- ⁹Departamento de Tecnologías de la Información, CUCEA, Universidad de Guadalajara, Zapopan, México.
- ¹⁰Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
- ¹¹College of Science and Engineering, Chubu University, Kasugai 487-8501, Japan.
- ¹²Chubu Innovative Astronomical Observatory, Chubu University, Kasugai 487-8501, Japan.
- ¹³Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan.
- ¹⁴Nambu Yoichiro Institute for Theoretical and Experimental Physics, Osaka Metropolitan University, Osaka 558-8585, Japan.
- ¹⁵National Institute of Informatics, Tokyo 101-8430, Japan.
- ¹⁶Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan.
- ¹⁷College of Industrial Technology, Nihon University, Narashino 275-8575, Japan.
- ¹⁸RIKEN, Wako 351-0198, Japan.
- ¹⁹Faculty of Engineering, Osaka Electro-Communication University, Neyagawa 572-8530, Japan.
- ²⁰Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan.
- ²¹Doctorado en Ciencias Físicas, CUCEI, Universidad de Guadalajara, Guadalajara, México.
- ²²Maestría en Ciencia de Datos, Departamento de Métodos Cuantitativos, CUCEA, Universidad de Guadalajara, Zapopan, México.
- ²³Japan Atomic Energy Agency, Tokai-mura 319-1195, Japan.

¹Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan.

ALPACA Site

Cosmic Ray Observatory at 5200m a.s.l.

4200m

1

エル・アルト

Airport

4000m

Google

ALPACA Site 4740m a.s.l (- 570 g/cm2)

4600m

ラパス

La Paz

a Paz

41

TUPAC KATAF

ホセ・アルサ

3

ラパス国際空港 Aeropuerto Internacional El Alto (41)

ALPACA Project

ALPAQUITA Air Shower Array

¹/₄ALPACA-scale air shower array 1m² scintillation detector x 97 with 15m spacing Effective area ~18,000m²

 <u>Air Shower Trigger Condition</u>: Any 4 detectors with >0.6 particles within 600ns
→ Air shower trigger rate ~280Hz Cosmic-ray mode energy ~7 TeV

1m² 5mm lead plate 1m² Scintillator (50cm x 50cm x 5cm x4)

Inverse pyramid shape Stainless steel box (White painted inside)

2-inch PMT x1

Construction status: 2022 Jun. Deploy detectors 2022 Sep. Partial operation 2023 Apr. Full operation

ALPAQUITA Air Shower Analysis

Even-Odd Method

Event selection criteria:

- Zenith angle < 40deg
- In Array flag = on
- 1.25 Any 4 flag = on
- Residual error < 1.0

Even-Odd opening angle : Opening angle between directions determined by two independent arrays (even and odd arrays)

Angular resolution $\sigma_{50} = \Delta \theta_{\text{OP}} \ / \ 2 = \sim 1^{\circ}$

Moon Shadow Detection

We can check

- ✓ Angular resolution
- Pointing accuracy
- ✓ Absolute energy scale

With cable length correction \rightarrow Successfully detected at 6.7 σ ALPAQUITA Moon Shadow Angular Resolution = 0.9deg -----deficit counts -200 direction -400 -600 in Moon Cumulative -800 1000 -6σ 1200 1400 5000 20000 25000 30000 10000 15000

Time cumulative background events

Displacement by geomagnetic field $\Delta \theta \sim \frac{1.6^o}{E[\text{TeV}]}$

 4σ

- April 7, 2023 July 16, 2023 (83 days)
- \rightarrow Westward shift ~0.2° as expected
- \rightarrow Moon shadow verified ~0.9° resolution

Summary & Prospects

- ✓ Data period: 2023 April 7 2023 July 16 (83 live days).
- \checkmark We successfully detected the Moon Shadow at 6.7 $\sigma.$
- ✓ Angular resolution is estimated to be \sim 0.9° as expected.
- \checkmark We will start construction of one underground MD pool in 2023.
- \checkmark We will start full ALPACA AS array and 4 MD pools in 2024.
 - \rightarrow sub-PeV γ -ray/CR observation will start soon in the southern hemisphere!

BACKUP SLIDES

ALPAQUITA Sensitivity

Kato et al (ALPACA Collob.)

"Detectability of southern gamma-ray sources beyond 100 TeV with ALPAQUITA, the prototype experiment of ALPACA", Exp. Astro., 52, 85 (2021)

"Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector"

S. Okukawa et al., Exp. erimental Astron., 55, 325 (2023)

Expected numbers of gamma-ray and CRs as a functions of the number of detected muons

(c) Optimal survival

Hadronic interactions dependence in the typical gamma-ray flux estimation performed by ALPAQUITA < 3.6%

 $56.2 < \Sigma \rho < 100 \quad (E_v \text{ of } 28.8 \text{ TeV})$

ALPACA Sensitivity

Installation of cables

Installation of PMTs

Electric field monitor

Weather monitors

ALPACA Project

ALPACA Project

