Multi-wavelength emission from Jets and Magnetically Arrested Disks in Radio galaxies

Riku Kuze (Tohoku Univ.) Dr. Shigeo S. Kimura (Tohoku Univ.) Dr. Kenji Toma (Tohoku Univ.)

TeVPA2023, Napoli, 13th Sep 2023

Radio-loud AGNs (10% of all AGN) -> Strong relativistic jet.

A Radio ~ GeV-TeV gamma-rays are observed in nearby some radio galaxies.

Multi-wavelength emission mechanism and region are still unknown.

Hadronic emission from the Kimura & Toma 2020 Magnetically Arrested Disks (MADs) is proposed.

Radio Galaxies

Schematic image of MAD model

turbulence accelerates the CRs.

5 particle species

Thermal electron Primary electron Primary proton

 $\gamma + \gamma \rightarrow e^+ + e^-$

MAD model

the broadband photons.

Steady & one-zone approximation

Equation of continuity in energy space

$$-\frac{d}{dE_i} \left(\frac{N_{E_i} E_i}{t_{i,\text{cool}}} \right) = \dot{N}_{E_i,\text{inj}} - \frac{N_{E_i}}{t_{\text{esc}}}$$

Cooling Injection Escape

To understand the origin of the broadband photons from AGN -> Constructing the Jet-MAD model is required

Motivation of our study

MAD model can explain gamma-ray data, but cannot explain radio to X-ray data.

Jet-MAD model -Radio Blob-

Multi-wavelength observation of jets

RADIO VISIBLE **X-RAY** ALMA Hubble CHANDRA

Injection mechanism -> Unknown

Radio Blob -> e^+e^- pair plasma produced by $\gamma + \gamma \rightarrow e^+ + e^-$

Jet-MAD model -Disk & Blob-

Magnetization parameter: σ σ : Pair production rate=Escape rate R^2

$$\sigma = \frac{D}{4\pi h} \sim 10^5 \quad h: \text{Enthalpy}$$

 $\sigma \rightarrow \text{Production rate}$ $\text{Production rate} \rightarrow B_{\text{MAD}}$ $B_{\text{MAD}} \rightarrow \dot{m}$ $B_{\text{MAD}} = \sqrt{\frac{\dot{M}c\Phi_{\text{MAF}}}{4\pi^2 R_g^2}}$

Jet and Disk are related by the accretion rate, *m*.

Magnetically dominated jet $\sigma \sim 10^5 \gg 1$ ->Particle acceleration by the dissipation of the magnetic energy

Basic equation of Jet-MAD model

Magnetic reconnection or AW dissipation accelerates the particles.

Two species of particle Nonthermal Electrons Nonthermal Protons Injected from ambient gas via KHI

Differential number density of accelerated particle

Exponential cutoff

Parameter : $\tilde{\sigma} \sim 0.01$, $\dot{m} \sim 6.0 \times 10^{-5}$

Multi-wavelength emission via Synchrotron ra

$R \sim 0.05$ ($r_{t} \qquad R_b \simeq 100 R_b$	$R_g, Z \simeq 10^3 R_g \qquad \delta_D =$	1.9
$\sigma \sim 1.0 \times 10^5$ $S_{inj,MAD} = 1.4, S_{inj,jet} =$			
		MAD	Je
F_{syn} F_{ssc} $TeV \rightarrow$ 12 13 14	Radio - IR	Thermal Electron	Elect
	Opt - UV		Elect
	X-ray	Nonthermal Electron (>10keV)	<mark>Elect</mark> (<10
	GeV	Nonthermal Proton	
	TeV	Secondary electron- positron pairs (Bethe-Heitler process)	
diation		•	

Jet-MAD model can explain the multi-wavelength observational data

We consider two different acceleration mechanisms: Magnetic reconnection (exp cutoff or power-law tail) & Alfven dissipation

-> Jet-MAD model with the magnetic reconnection can explain the observational data, but the Alfven dissipation cannot explain that.

-> The particle acceleration mechanism is likely the magnetic reconnection.

Summary

- Multi-wavelength emission mechanism in radio galaxies is still unknown MAD model cannot explain the radio to X-ray data. -> We construct the Jet-MAD model with particle injection model.
- ✓ Jet-MAD model can explain the observational data of M87
 - $og(E_{\gamma}F_{E_{\gamma}})$ [erg s⁻¹ cm⁻²] -11 -12 +Nonthermal electron(Jet)(< 10keV) -13
 - Radio IR: Thermal electron(MAD) + Nonthermal electron(Jet) Optical - X-ray: Nonthermal electron(Jet) X-ray: Nonthermal electron(MAD)(> 10keV)
- We consider two different acceleration mechanisms: -> Magnetic reconnection & Alfven wave dissipation
 - <u>Magnetic reconnection</u> can explain the observational data <-> <u>Alfven wave dissipation</u> cannot explain that.
 - -> The particle acceleration mechanism is likely the magnetic reconnection

-4 -3 -2 -1 0

1 2

3

456

 $\log(E_{\gamma})[eV]$

11

Back Up Slide

Particle distribution of Injection term

Maximum Energy

$$\gamma_{\rm max} = \xi \left(\frac{\delta_B}{B}\right)^2 \sigma$$

 δ_{R} : Amplitude of the perturbed magnetic field

 ξ : The effect of the density reduction due to the expansion of the blob by the velocity dispersion of the blob

$$\gamma_{\min} = \left(\frac{\delta_B}{B}\right)^2 \frac{n_e m_e}{n_p m_p} \tilde{\sigma}$$

Particle acceleration by the dissipation of the Alfven turbulence

The Other Scenario: Alfven Dissipation Return AW Mode decay B Turbulence inside the blob

Basic equation of Jet-MAD model Base of Jet ($\sigma = \sigma$) blob $L_j = (1 + 0.5\sigma) n_e m_e c^2 \pi R_b^2 c$ $n_{e} = \frac{1}{1 + \frac{1}{2}\sigma} \frac{1}{m_{e}c^{2}} \frac{1}{\pi R_{b}^{2}c}$ $L_i \approx \eta \dot{M} c^2 = \eta \dot{m} L_{\rm Edd}$ blob Dissipation region ($\sigma = \tilde{\sigma}$) $\tilde{n}_e \approx \frac{1}{1 + \frac{1}{2}\tilde{\sigma}} \frac{1}{\pi R_b^2 c} \frac{1}{m_p c^2}$ $\left|L_{j} = \left(u_{e} + u_{p} + \frac{B^{2}}{8\pi}\right)\pi R_{b}^{2}c\right|$ MAD econnection R^2 $B = \sqrt{4\pi h \tilde{\sigma}}$

 $h = u_{\rho}$

Simultaneous multi-wavelength observation by EHTMWL

