

#### MAGIC Major Atmospheric

**Gamma Imaging** 

**Cerenkov Telescopes** 

# 3-year low-state at very high energies of the blazar 1ES1959+650: the broadband SED analysis

Cristina Nanci

and Cosimo Nigro, Cornelia Arcaro, Elisa Prandini, Daniela Dorner, Roberta Zanin, Axel Arbet-Engels, Mireia Nievas Rosillo, Filippo D'Ammando, Ettore Bronzini, Shunsuke Sakurai on behalf of the MAGIC Collaboration with the contribution of the OVRO Collaboration and TELAMON Collaboration



TeVPA 2023 - Napoli, Italy

September 13, 2023

## Blazars' emission mechanisms

- AGN with jet aligned to the line of sight
- Broadband emission from radio to gamma rays up to Very High Energies (VHE, E > 100 GeV)



observer

θ

## Blazars' emission mechanisms

- AGN with jet aligned to the line of sight
- Broadband emission from radio to gamma rays up to Very High Energies (VHE, E > 100 GeV)



observer

θ

## Blazars' emission mechanisms

- AGN with jet aligned to the line of sight
- Broadband emission from radio to gamma rays up to Very High Energies (VHE, E > 100 GeV)



observer

θ

## Blazars' classification

- Classification based on synchrotron position (in BL Lacs):
  - 0
  - 0
  - extreme high energy-peaked  $\rightarrow$  EHBL,  $v_{peak} > 10^{17}$  Hz high-energy peaked BL  $\rightarrow$  HBL,  $10^{15}$  Hz  $< v_{peak} < 10^{17}$  Hz intermediate-energy peaked  $\rightarrow$  IBL,  $10^{14}$  Hz  $< v_{peak} < 10^{15}$  Hz low-energy peaked BL  $\rightarrow$  LBL,  $v_{peak} < 10^{14}$  Hz 0
  - 0



#### Emission mechanisms investigation

Broadband spectral energy distribution (SED) modelling



#### Emission mechanisms investigation

Broadband spectral energy distribution (SED) modelling

#### One-zone model:

The emission is coming from a blob filled:

- with homogeneous magnetic field
- with particles following a particle distribution

observer

The blob is moving towards the observer with bulk Lorentz factor and bulk Doppler factor  $\delta$  = 1 / $\Gamma$ (1 –  $\beta$  cos  $\theta$ )



#### Two-zone model:

The emission is coming from two regions:

- looking for correlations between bands and different variability time scale in different bands

 $\rightarrow$  emission coming from different regions

#### The BL Lac 1ES1959+650

z = 0.047 (Schachter et al. 1993) at Ra: 19h59m59.85s, Dec:+65d8'54.65"



#### The BL Lac 1ES1959+650

z = 0.047 (Schachter et al. 1993) at Ra: 19h59m59.85s, Dec:+65d8'54.65"



9

## 2016 flare SED analysis

1. leptonic scenario: one-zone SSC model  $10^{-9}$  $\delta = 45$ , B=0.25 G 13th June s<sup>-1.</sup>  $\delta = 50, B = 0.22 G$ δ=60, B=0.14 G [erg cm<sup>-2</sup> Historical (2006) 10-10 Swift (XRT/UVOT) MAGIC Fermi-LAT  $10^{-11}$ dN/dE 10-12 × <sup>∾</sup>⊔ 10<sup>-13</sup> 1014 1011 1017 1020 1023 1026 1029 Frequency (Hz)

The parameters of the model are compatible with an EHBL-like behaviour

EHBL-like behaviour seen in Mrk501 and 1ES 2344+514 (ICRC2023)

#### 2016 flare SED analysis



extreme values of magnetic field strength required (~100 G)

## 2016 flare SED analysis



#### Other SED analysis: a few recent results



#### The 2020-2022 MAGIC data





#### The 2020-2022 MWL data

- Gamma-ray: Fermi-LAT
- X-ray: Swift XRT
- UV: Swift UVOT
- Optical: Tuorla and KAIT
- Radio single-dish: OVRO and TELAMON
- •
- Radio VLBI: BO-VLBA



#### The 2020-2022 MWL data

- High variability in X-rays confirmed by other works e.g. Wani et al. 2023
- No major outburst in the 2020-2022 data
- SSC approach are being tested to model the MWL



#### Summary

#### <u>What we know:</u>

- Orphan flares at VHE (2002 and 2012)
- Candidate neutrino source?
- Occasionally EHBL-like behaviour
- One-zone SSC model works but it is not the end of the story
- High variability in X-rays, often lack of intraband correlations (e.g., Li et al. 2022)

#### <u>What we aim to understand:</u>

- Which process powers the low state 1ES 1959+650 emission and what is different from the flaring state?
- Which are the parameters that drive the 1ES 1959+650 emission mechanism during the low state?

MAGIC Collaboration paper on 2020-2022 monitoring results is in preparation

#### Interested in proposing observations with MAGIC ?

Next MAGIC observing call (Cycle-19) will come very soon. It will be posted here: <u>https://magic.mpp.mpg.de/public/magicop/</u> (Deadline for submitting proposals in the end of October or beginning of November)





#### The BL Lac 1ES1959+650: SED analysis

MAGIC Collaboration 2020





Fast intranight variability constraints size of extremely compact emitting region



X-ray variability



22











#### 1ES1959+650 Ra=299.99833 deg Dec=65.14861 deg (NH=1.0E21 cm^-2)