TeVPa Napoli, September 11-15, 2023

The LHAASO PeVatron bright sky: what we learned

Martina Cardillo IAPS-INAF

martina.cardillo@inaf.it

M. Cardillo & A. Giuliani Appl. Sci. 2023, 13(11), 6433; https://doi.org/10.3390/app131 16433

Schroder+19

But also the Galactic Component is not so bright and clear

Recent results by CALET/DAMPE show that the region below 1 PeV may not be as featureless as we thought, showing hardening and steepening between 100 GeV and 100 TeV

Between the *knee* and the *second knee* (~10¹⁷ eV) should be the transition from Galactic to extragalactic component.

Extra-Galactic component

Limited information

Cosmic Ray Overview

- Extra-Galactic magnetic field
- Origin connected to transition region

Galactic Cosmic Ray origin

The main candidates: Supernova Remnants

- ENERGY SUPPLY: $L_{CR} = 10\% L_{SN}$
 - COLLISIONLESS SHOCKS:

Pion bump detection:

distinction leptonic/hadronic

only at E<200 Me∨

- energy dissipated via wave-particle interaction instead of particle-particle collisions. $\mathcal{R} = \frac{u_u}{u_D} = \frac{4M_s^2}{3 + M_s^2}$ $M_s \to \infty$, $\mathcal{R} \to 4$
- STRONG SHOCKS AND DSA:
- MAGNETIC FIELD AMPLIFICATION

Direct evidences

Confrimation of the presence of CRs but not of fresh acceleration (likely RE-accelerated or D suppression) [MC+ 2016, Celli+ 2019]

Pevatrons \rightarrow g-ray at E>100 TeV only of hadronic origin (<u>maybe.</u>

Possible

Detection

problem \rightarrow

PeVatrons only

in the first

100 years

[MC+2015]

GENOLINI talk

Where do most CRs come from?

Energetics **

Theory

- $P_{CR} \sim 10^{40} 10^{41} \text{ erg/s}$
- Power-law injected spectrum Required from DSA theory
- ✤ Maximum energy
 - They must explain the PeV proton energies

* Anisotropy

- Source distribution has to be correlated with CR anisotropy (at PeV, ~10⁻³)
- ✤ Composition
 - They must explain CR composition and its energy dependence

✤ Detected VHE-UHE Emission

Observations

- * Spectral curvature
 - Signature of Emax, KN, spectral breaks

Spatially-resolved emission

* Correlation with target material

- Not perfect: i.e. emission is convolution of CR distribution with gas
- * Energy-dependent morphology
 - Expected in general due to energy dependence of transport and/or cooling

* A multi-wavelength counterpart!

source

MC&Giuliani 2023

Other sources - Before LHAASO

Galactic Center Region

- Correlation molecular gas and gamma-ray
- CR energy density 10 CR sea
- CR spectrum $\rightarrow \gamma_E = 2.3 2.4$ up to 100 TeV (large error bars)
- Spatial distribution → 1/r
 - First spectro– morphological analysis on– going (Devin talk Gamma 2022)

Hot and rarefied extended cavities (OB stars winds and SNRs [Bykov 1992]:

- Multiple shocks and winds
- No radiative phase
- Low-energy spectrum slope similar to the one measured by Voyager
- Explanation of some CR composition anomalies[Higdon+ 2003, Tatischeff 2018]
- Spatial and spectral behavior similar to the GC one [Aharonian 2018]

Other sources - Before LHAASO

Crab Nebula & the others

Detection above 1 PeV!!! WHAT THE FREXP

Crab is a PWN (leptonic source)

50...

Leptonic origin of gamma-rays possible!!
There is a hadronic component?

Binaries & Microquasars

And for the propagation: TeV HALOS

Both pulsar and extended emission evaded detection for a long time Escaping electrons and positrons (due to RS that disrupts PWN) form an extended halo of GeV and TeV gamma-rays

> TeV Halos as new source class

- TeV halo candidate near the Galactic plane in a non-crowded region.
- This TeV halo candidate shares similar characteristics to others, suggesting that TeV halos could be a general feature of middle-age pulsars.

Pevatrons

HIGH-ENERGY ASTROPHYSICS

<u>PEVATRON = an object capable of accelerating PARTICLES (hadrons or leptons) up to</u> <u>the PeV (=10¹⁵ eV) range</u>

INVERSE COMPTON (leptonic) Thomson scattering $(hv_i \ll m_e c^2)$

- transfer small,
- scattering almost elastic,
- Thomson cross-section applied Klein-Nishina scattering $(hv_i \gg m_e c^2)$
- transfer large,
- scattering deeply inelastic,
- need to use cross-section derived from QED.

COSMIC RAY CONTEXT <u>PEVATRON</u>= an object capable of accelerating <u>HADRONS</u> up to <u>the PeV (=10¹⁵ eV) range</u>

We have some hints of emission around 100 TeV... but just one PeVatron (the Crab)... And it could be a leptonic

...when suddenly...

"Pevatrons" storm from LHAASO OUR GALAXY IS FULL OF "PEVATRONS"!!!!!!!

LHAASO, Nature, 594, p.33-36, 2021

WHAT THE I CARP

12 "PeVatrons" discovered with high significance (>70

LEPTONIC Or HADRONIC?

Source name	RA (°)	dec. (°)	Significa	ance above 100 TeV (×σ)	E _{max} (PeV)	Flux at 100 TeV (CU)		
LHAASO J0534+2202	83.55	22.05	17.8		0.88 ± 0.11	1.00(0.14)		
LHAASO J1825-1326	276.45	-13.45	16.4		0.42 ± 0.16	3.57(0.52)		
LHAASO J1839-0545	279.95	-5.75	7.7		0.21 ± 0.05	0.70(0.18)		
LHAASO J1843-0338	280.75	-3.65	8.5		0.26 - 0.10+0.16	0.73(0.17)		
LHAASO J1849-0003	282.35	-0.05	10.4		0.35 ± 0.07	0.74(0.15)		
LHAASO J1908+0621	287.05	6.35	17.2		0.44 ± 0.05	1.36(0.18)		
LHAASO J1929+1745	292.25	17.75	7.4		0.71-0.07 ^{+0.16}	0.38(0.09)		
LHAASO J1956+2845	299.05	28.75	7.4		0.42 ± 0.03	0.41(0.09)		
LHAASO J2018+3651	304.75	36.85	10.4		0.27 ± 0.02	0.50(0.10)		
LHAASO J2032+4102	308.05	41.05	10.5		1.42 ± 0.13	0.54(0.10)		
LHAASO J2108+5157	317.15	51.95	8.3		0.43 ± 0.05	0.38(0.09)		
LANSO 12226+6057	336.75	60.95	12.6		0.57 + 0.19	1.05(0.16)		

Cao ICRC 2021

LHAASO J1839-0545

Extended Data Table 2 | List of energetic astrophysical objects possibly associated with each LHAASO source

LHAASO Source	Possible Origin	Type	Distance (kpc)	Age $(kyr)^a$	$L_s (\text{erg/s})^b$	Potential TeV Counterpart ^c
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	$4.5 imes 10^{38}$	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	2.8×10^{36}	HESS J1825-137, HESS J1826-130,
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HWC J1825-134
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	$2.0 imes 10^{36}$	2HWC J1837-065, HESS J1837-069,
	PSR J1838-0537	PSR	1.3^e	4.9	$6.0 imes 10^{36}$	HESS J1841-055
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$		HESS J1843-033, HESS J1844-030,
			_			2HWC J1844-032
LHAASO J1849-0003	PSR J1849-000	PSR	7^g	43.1	$9.8 imes 10^{36}$	HESS J1849-000, 2HWC J1849+001
	W43	YMC	5.5^h			
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^i	$\sim 10 - 20^{j}$		MGRO J1908+06, HESS J1908+063,
	PSR 1907+06(2	PSR	2.4	19.5	$2.8 imes 10^{36}$	ARGO J1907+0627, VER J1907+062,
	PSR 1907+0631	PSR	3.4	11.3	$5.3 imes10^{35}$	2HWC 1908+063
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes 10^{36}$	2HWC J1928+177, 2HWC J1930+188,
	PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$	HESS J1930+188, VER J1930+188
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}{}^d$	$1.8 - 3.3^k$		
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d			
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7 l}_{-1.4}$	17.2	$3.4 imes 10^{36}$	MGRO J2019+37, VER J2019+368,
	Sh 2-104	H II/YMC 3	$.3 \pm 0.3^m / 4.0 \pm 0.5^n$			VER J2016+371
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^o	·		TeV J2032+4130, ARGO J2031+4157,
	PSR 2032+4127	PSR	1.40 ± 0.08^o	201	$1.5 imes 10^{35}$	MGRO J2031+41, 2HWC J2031+415,
	SNR G79.8+1.2	SNR candidate		_		VER J2032+414
LHAASO J2108+5157		—				—
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^p	$\sim 10^p$		VER J2227+608, Boomerang Nebula
	PSR J2229+6114	PSR	0.8^p	$\sim 10^p$	$2.2 imes 10^{37}$	

Pulsar Wind Nebulae

Pulsar Wind Nebulae

2022

Vercellone+ 2022

Leptonic origin of gamma-rays > 100 TeV is possible \rightarrow IC on BKG photon field (no KN effect due to an increase of the cooling time in radiation dominated environments [IOW B]) [Breuhaus+ 2022]

Acceleration is limited by the maximum potential drop (not in the Crab)

If there are protons (hadrons):

- ~few % of the total energy (Guepin+ (2020))
- pp emission may show up in the high \bullet energy tale of IC emission

Young Massive Star Clusters (inside superbubbles) ers with age < few Myrs that can reach M up to 6x104 Solar

- Clusters with age < few Myrs that can reach M up to 6x10⁴ Solar masses
- Acceleration at 1 PeV possible at Wind Termination Shocks [Morlino 2021, Vieu et al. 2022]
- Collective effects in the most compact clusters (size of a few pc) can generate a collective ourflows (right amount of power [Vink 2022])
- Several physical ingredients to a deep analysis (cluster population, stellar population inside, stellar wind, cluster wind, PA model, gas distribution) [Morlino CTAO general meeting]

 $10^2 \ 10^4 \ 10^6 \ 10^8 \ 10^{10} \ 10^{12} \ 10^{14} \ 10^{16} \ 10^{11}$

E (in eV)

MENCHIARI talk

LHAASO J1825-1326

Tev Halos Several LHAASO sources could be TeV halos! [MC&Giuliani 2023]

LHAASO J2032+4102

LHAASO J2108+3651

PINETTI talk

LINDEN talk

LHAASO J1956+2845

And finally... The Supernova Remnants

Tibet AS collaboration 2021 Cao+ (LHAASO coll) 2021

Fang+ 2022

Fermi-LAT and MAGIC detection favoured hadrons from SNR/MC interaction

Significance

3<u>व</u>

Almost all the talks in

this session

MAGIC coll.

2023

Propagation study

Gamma Cygni (MAGIC collaboration 2019)

Celli Talk Gamma2022

More kinds of source is better than one

Vieu&Revill 2023

Sources	Ra (°)	Dec (°)	σ >100 TeV	Emax (PeV)	Origin	Neutrino constraints		Favoured model	
LHAASO J0341+5258	55.34	52.97	6 at 25 TeV	not defined	not identified		no	few information	
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	Crab PWN	(Huar Abb	yes ng+22a,b, basi+23)	Lepto-Hadronic (Nie+22, Vercellone+22)	HIGHES
LHAASO J00621+3755	95.47	37.92	3.1	not defined	TeV halo, PWN		no	challenging	SENSITIV
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	TeV halo, PWN, SNR	Hua	yes ang+22a)	Leptonic (Burgess+22)	
LHAASO J1839-0545	279.9 <mark>5</mark>	- 5.75	7.7	0.21 ± 0.05	PWN, MSC		no	Hadronic (Banik+21)	
LHAASO J1843-0338	280.75	- 3.65	8.5	0.26+0.6	PWN, SNR		no	challenging	
LHAASO J1849-0003	282.35	- 0.05	10.4	0.35 ± 0 07	PWN, MSC		no	challenging	
LHAASO J1908+621	287.05	6.35	17.2	0.44 ± 0 05	PWN, SNR	(F ua	yes ang+22a)	Lepto-Hadronic (DeSarkar+22)	GO ANGU
LHAASO J1929+1745	292.25	17.75	7.4	0.71 ^{+0.16} -0.07	PWN , TeV halo, SNR		no	challenging	RESOL
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	PWN , TeV halo, SNR		no	challenging	
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	PWN, YMC		no	Leptonic (Yang+23)	
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	YMSC, PWN, TeV halo	(Ba	yes inik+22)	Hadronic (Banik+22)	
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	TeV halo	(К	yes ar+22)	Hadronic (Kar+22)	
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	SNR, PWN		no	Hadronic (Fang+22, MAGIC23)	MC&Giuliani 2023

HIGHEST ENERGY SENSITIVITY

WIDE BAND SENSITIVITY

GOOD ANGUKAR RESOLUTION

NEUTRINOS

Very recent results (especially from ICRC 2023)

- LHAASO J1908+621 shows a break in the spectrum
- LHAASO J2032+4102 shows a possible Cut-Off

♦ First LHAASO catalog with a total of 43 candidate PeVatrons! (WCDA+KM2A) <u>https://arxiv.org/abs/2305.17030</u>

- LHAASO J2002+3238 coincident with SNR G69.7+1.0 [Hou et al. ICRC23]
- LHAASO J1959+2850 coincident with PSR J1958+2845 and SNR G66.0-0.00 + associated MC [Yu et al. ICRC23]
- LHAASO J1740+1000: could be a bow-shock pulsar tail [Xu et al. ICRC23]
- LHAASO J1922+1403: W51c up to 300 TeV! [Chen et al ICRC2023] •
- SNR G150.3+4.5: coincident with 4FGL J0426.5, could be a PWN or a SNR/MC [Zeng et al ICRC23]
- GAMMA CYGNI: KM2A detected PeV emission! [Feng et al. ICRC23] •

 \diamond Further studies from the other instruments (see ICRC23 presentations) \rightarrow the most analysed:

- LHAASO J2108+5157 (VERITAS&HAWC [Kumar et al. ICRC23] and MC [Toledano-Juarez ICRC23]
- LHAASO J2226+6057 (HAWC [Son et al. ICRC23] and VERITAS [Park et al. ICRC23])
- LHAASO J1825-1326 (HAWC [Goksu talk])

A lot of SNRS!

Yao talk, LHAASO Highlight ICRC2023, Lemoine-Goumard GA

highlights ICRC2023

What we need in the next future?

 Wide FoV with almost homogeneous off-axis acceptance ✓ Multi-target fields, surveys, and extended sources (GC, SNRs, TeV halos) ✓ Enhanced chance for serendipitous discoveries

Sensitivity: better than current IACTs (E > 10 TeV): ✓ Extended spectra for PeVatron confirmation and lepto/hadro origin discerning (SNRs, Micro-quasars, PWN) Diffusion coefficient constraints (Gamma-Cygni, SNRs, TeV halos)

Energy/Angular resolution: $\leq 10\% / \leq 0.1^{\circ}$ (E ≤ 10 TeV) ✓ Characterize extended sources morphology ✓ Energy dependence ✓ Identification acceleration regions ✓ MW association ✓ Spectral Shape (hadrons vs leptons)

Li et al. ICRC23 (Neutrino/ LHAASO diffuse emission) Burley et al. ICRC23 (Neutrino promising target and SNRs)

And we would like also a neutrino detection, thanks!

Several Talks in the TeVPa neutrino sessions

> Aha... got it! Now please, tell me another fantasy story!! Nove them!

Sensitivity: better than current IACTs (E > 10 TeV):
 ✓ Extended spectra and cut-offs contsraints

Energy/Angular resolution: ≤ 10% / ≤ 0.1° (E ≤ 10 TeV) ✓ Characterize extended sources morphology Vercellone+ 2022, Scuderi+ 2022, CTA website, MC&Giuliani 2023

Tutone talk

IMPORTANT MESSAGES

- Cosmic-ray origin: a Very Hot Topic since 1912!!
- The three main candidate hadronic PeVatrons are Pulsar Wind Nebulae, Supernova Remants and Massive Star Clusters
- The future in the VHE domain is related to LHAASO, ASTRI-MA and CTA and their synergy with other instruments
- ☆ The collaboration between gamma-ray and neutrino communities will be fundamental in order to solve the CR origin issue → importance of VODF (Veryhigh-energy Open Data Format [Khelifi+2023 ICRC23 proc., Unbenhaum+23])
- Look at the ICRC2023 and TeVPa presentations and proceedings with a lot of new observations and modeling of PeVatron candidate sources
- A lot of work to do: from simulation and software to data analysis to theoretical interpretation

Thank you very much!