

Jet Contribution to the y-ray Luminosity in NGC1068

TevPa 2023 – Napoli, Italy Silvia Salvatore Ruhr Universität Bochum

Two Zones Model

AGN corona+disk + starburst

- ALMA observations
- Significant difference in gamma-ray and neutrino flux for energies between 100 GeV and 10 TeV

Introducing the Jet

Radio data

Michiyama et al., 2022

Silvia Salvatore - Ruhr-Universität Bochum

Gallimore et al., 2004

Introducing the Jet

Radio data

Offset (arcsec)

Declination

Introducing the Jet

Radio data

1.0

0.8

0.6

0.2 Declin

0.0

-0.2

-0.4

Offset (arcsec) 0.4

Michiyama et al., 2022

very slowly moving blobs → negligible Doppler factor Silvia Salvatore - Ruhr-Universität Bochum

How to Produce High Energy Photons from These Blobs?

Possible γ -ray production scenarios:

- Leptonic scenario \rightarrow Inverse Compton (constrained by the jet radio data)
- Hadronic scenario \rightarrow py interaction (constrained by the jet power)

Photon Fields

Spectral distribution of the energy densities

Photon Fields

Spectral distribution of the energy densities

Photon Fields

Spectral distribution of the energy densities

Distance dependance of the energy densities at ν_0

- $\varepsilon_{syn}(v_{syn})dv_{syn} \simeq P_{syn}(\gamma_e)n_e(\gamma_e)d\gamma_e/4\pi$
- $\epsilon_{IC}(\nu_{IC})d\nu_{IC} \simeq P_{IC}(\gamma_e)n_e(\gamma_e)d\gamma_e/4\pi$

$v_{IC}L_{v_{IC}} \simeq 2[3v_{IC}e/(8\pi v_{syn}v_0 m_e c)]^{(3-q_e)/2} v_0 L_{v_0}B^{-(1+q_e)/2} v_{syn}L_{v_{syn}}/d^2c$

	d	r_{b}	$\nu_{\rm obs}$	$\nu_{\rm obs} L_{\nu_{\rm obs}}$	α
	[pc]	[pc]	[GHz]	$[10^{30} \text{ erg/s}]$	
\mathbf{C}	21	2.5	5	6.4	0.23
NE	43	4.6	5	9.5	0.90
P1	484	3.5	92	7.6	0.50
P2	477	3.5	92	8.6	0.59
$\mathbf{P3}$	468	3.5	92	8.8	0.65
P4	468	3.5	92	7.5	0.50

• v_{IC} \rightarrow Fermi-LAT band between $v_{IC,Iow} = 0.18$ GeV/h (____) and $v_{IC,high}$ = 17.20 GeV/h (-----)

	d [pc]	$r_{ m b}$ [pc]	$ u_{ m obs} $ [GHz]	$\frac{\nu_{\rm obs} L_{\nu_{\rm obs}}}{[10^{36}{\rm erg/s}]}$	α
\mathbf{C}	21	2.5	5	6.4	0.23
NE	43	4.6	5	9.5	0.90
P1	484	3.5	92	7.6	0.50
P2	477	3.5	92	8.6	0.59
$\mathbf{P3}$	468	3.5	92	8.8	0.65
P4	468	3.5	92	7.5	0.50

• v_{IC} \rightarrow Fermi-LAT band between $v_{IC,Iow} = 0.18$ GeV/h (____) and $v_{IC,high}$ = 17.20 GeV/h (-----)

	d [pc]	$r_{ m b}$ [pc]	$ u_{ m obs} $ [GHz]	$\frac{\nu_{\rm obs} L_{\nu_{\rm obs}}}{[10^{36}{\rm erg/s}]}$	α
\mathbf{C}	21	2.5	5	6.4	0.23
NE	43	4.6	5	9.5	0.90
P1	484	3.5	92	7.6	0.50
P2	477	3.5	92	8.6	0.59
$\mathbf{P3}$	468	3.5	92	8.8	0.65
P4	468	3.5	92	7.5	0.50

• v_{IC} \rightarrow Fermi-LAT band between $v_{IC,Iow} = 0.18$ GeV/h (____) and $v_{IC,high}$ = 17.20 GeV/h (-----)

1043

1041

039

	d [pc]	$r_{ m b}$ [pc]	$ u_{ m obs} $ [GHz]	$\frac{\nu_{\rm obs} L_{\nu_{\rm obs}}}{[10^{36}{\rm erg/s}]}$	α
\mathbf{C}	21	2.5	5	6.4	0.23
NE	43	4.6	5	9.5	0.90
P1	484	3.5	92	7.6	0.50
P2	477	3.5	92	8.6	0.59
$\mathbf{P3}$	468	3.5	92	8.8	0.65
P4	468	3.5	92	7.5	0.50

 $B \sim 0.3 \text{ mG} \leftrightarrow B_{eq}$

softening of the electron spectrum

VICLIC [erg/s]

at
$$y_e = (3V_{IC,low} / 4V_{tor})^{0.5} \rightarrow 10 \text{ GeV}$$

Hadronic Scenario

 $\nu_{\pi\gamma}L_{\nu\pi\gamma} = r_{b}(h\nu_{\pi\gamma})^{2}A_{\gamma}f_{jet}P_{jet}(2-q_{p})\gamma_{p}^{-q_{p}-2}/(3m_{p}C^{3}(\gamma_{p,max}^{2-q_{p}-}\gamma_{p,min}^{2-q_{p}}))\int_{\epsilon_{i}/2\gamma_{p}}\overset{\alpha}{d}\epsilon n_{ph}(\epsilon)f(\gamma_{p},\epsilon)/\epsilon^{2}$

Hadronic Scenario

• $f_{jet} = 0.5$

- $P_{jet} = 10^{43} \text{ erg/s}$
- $\gamma_{p,min} = 1$, $\gamma_{p,max} = 200$
- $q_p \rightarrow (1,3)$

Sub-pc Scales Emission Sites?

Optical thickness evolution for different rb evolution scenarios

- The leptonic scenario \rightarrow unlikely
 - most likely candidate \rightarrow Blob C (~ 15 pc from BH) : \gg B ~ 0.3 mG \gg softening of electron spectrum at ~ 10 GeV
 - agreement with Lenain et al. (2010) : $d_{b-tor} = 65 \text{ pc} \rightarrow \text{our approach: radio}$ $r_b = 7 \text{ pc}$ B = 0.1 mGaccounted for
- The hadronic scenario \rightarrow unable to explain Fermi-LAT gamma-rays

- The leptonic scenario \rightarrow unlikely
 - most likely candidate \rightarrow Blob C (~ 15 pc from BH) : \gg B ~ 0.3 mG \gg softening of electron spectrum at ~ 10 GeV
 - agreement with Lenain et al. (2010) : $d_{b-tor} = 65 \text{ pc} \rightarrow \text{our approach: radio}$ $r_b = 7 \text{ pc}$ features are B = 0.1 mG accounted for

• The hadronic scenario \rightarrow unable to explain Fermi-LAT gamma-rays

- The leptonic scenario \rightarrow unlikely
 - most likely candidate \rightarrow Blob C (~ 15 pc from BH) : \gg B ~ 0.3 mG \gg softening of electron spectrum at ~ 10 GeV
 - agreement with Lenain et al. (2010) : $d_{b-tor} = 65 \text{ pc} \rightarrow \text{our approach: radio}$ $r_b = 7 \text{ pc}$ B = 0.1 mG accounted for
- The hadronic scenario \rightarrow unable to explain Fermi-LAT gamma-rays

- The leptonic scenario \rightarrow unlikely
 - most likely candidate \rightarrow Blob C (~ 15 pc from BH) : \gg B ~ 0.3 mG \gg softening of electron spectrum at ~ 10 GeV
 - agreement with Lenain et al. (2010) : $d_{b-tor} = 65 \text{ pc} \rightarrow \text{our approach: radio}$ $r_b = 7 \text{ pc}$ B = 0.1 mGaccounted for
- The hadronic scenario \rightarrow unable to explain Fermi-LAT gamma-rays