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● Flavor states -> superposition of mass states

- Parametrise with PMNS matrix

- Measured most of the free parameters at percent level
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Neutrino oscillations

2

Normal

Ordering



● Measurements in tension with standard oscillation (i.e. 3 states) at >3σ

- Gallium anomaly -> less νe than expected

- LSND -> more ν̄e than expected

- MiniBoone -> more νe and ν̄e than expected

Anomalies
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● Minimal extension -> new mass state that is blind to weak force

- Alters standard oscillation probabilities

- eV-scale sterile allows to explain “one by one” anomalies

3+1 model
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Normal ordering



● 3+1 does not find a consistent picture when performing global fits

- νµ→νe appearance requires νµ→νµ disappearance

3+1 puzzle
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The experimental landscape in 2012 2022
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Pranava Teja Surukuchi, Snowmass 2021 CSS,  July 2022
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Complex Situation

95% CL• The deficit from GA is too high to be compatible with 
updated reactor rates

• Also major portions of 3+1 suggested parameter space 
by GA excluded by relative reactor spectral data

• KATRIN is starting to exclude parameter space from 
high Δm2

• Complex situation: Vanilla 3+1 model seems increasingly 
less likely to explain combinations of datasets (see M. 
Hostert’s talk)

P. Teja (SnowMass 2022) M. Ross (SnowMass 2022)

νe disappearance

νµ disappearance

A. Sutton (NuFact 2023)



Largest neutrino detector on Earth!

1km x 1km x 1km

Buried >2km under the ice

>5k optical sensors
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4 The IceCube Neutrino Observatory

(a) (b)

(c) (d)

Figure 4.10 — Event Signatures in the IceCube Detector. The size of the
DOMs indicate the number of recorded photoelectrons, the color marks
the photon arrival time (red early, blue late, see scale at the bottom).
(a) Throughgoing track, E ⇡ 140 TeV. (b) Starting track, E ⇡ 70 TeV.
(c) Shower, E ⇡ 1 PeV. (d) “Double bang”, E ⇡ 200 PeV. The events
in (a)–(c) are experimental data, the event in (d) was simulated.
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Atmospheric neutrinos
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● Dominated by νµ from kaon decay

● Up-going -> shield for atmospheric muons
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FIG. 4.3. Contribution from decays of various particles to the atmospheric µ+ + µ� (top left), ⌫µ + ⌫̄µ (top right), ⌫e + ⌫̄e
(bottom left) and ⌫⌧ + ⌫̄⌧ (bottom right) flux in Sibyll-2.3c and H3a primary model at ✓ = 60�.

tween prompt fluxes of muons and neutrinos. The cross-
over between conventional and prompt flux happens at
several PeV and depends on the choice of models and
the zenith angle. Further sources of high energy muons
that are not included in our calculation are the photo-
production of muon pairs, which is suppressed by 10�4

wrt. the pair production cross section �e+e� [18], and the
nuclear interactions of muons. While the muon pair pro-
duction can significantly contribute to inclusive fluxes at
very high (PeV) energies, the nuclear interactions are
only important for the low energy tail of muon bundles
in air showers.

At E & 100 GeV the main source of muon neutrinos
(upper right panel) are semi-leptonic and 3-body decays
of charged kaons, see e.g. [19] for a more detailed discus-
sion of relevant channels. Pion and muon decays domi-
nate below this energy. Prompt neutrinos originate from
decays of charged and neutral D-mesons, where the fluxes
from D± are a factor of three higher. Since pions very
rarely decay into electron neutrinos (lower left panel),

those come mostly from decays of neutral and charged
kaons. At energies below 100 GeV and for near-horizontal
zenith angles the dominant fraction of electron neutrinos
is from muon decays, resulting in a strong association
with the muon flux. In turn, this means that the pre-
cision of the electron neutrino prediction for a few to
several tens of GeV is linked to the modeling of pion pro-
duction and muon energy loss and, to a lesser extent, to
kaon production.

Atmospheric tau neutrinos (lower right panel) are rare
[20], but we can discuss their flux for completeness. The
dominant production channel of tau neutrinos is the de-
cay of D+

s ! ⌧+ + ⌫⌧ , where the subsequent decay of
⌧ ! ⌫⌧ + X is more e�cient in producing a forward tau
neutrino, than the decay of the meson. Therefore most
of the tau neutrino flux comes from the decay of the tau
lepton itself (black and blue line in lower right panel in
Fig. 4.3).

Other sources of atmospheric leptons that are not
taken into account in our calculation are B-hadrons.
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Matter enhanced oscillation
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(matter effects in ν̄µ)
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Select upgoing tracks

● Moving from simple cuts to BDTs

- Reduce the contamination of atmospheric muon (<2.5 events/y)

- Higher muon neutrino efficiency (factor 1.4)
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Energy estimator

12

● New energy reconstruction using NN

- Dedicated event selection for starting events -> better proxy from neutrino energy

StartingThrough-going
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Systematics
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● Main changes with respect to previous analysis

- Bulk ice -> moving to energy+zenith dependence

- Conventional flux -> new treatment using DAEMONFLUX (PRD107, 123037)

- Non-conventional flux -> Using broken power law
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Data Sample
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● Unblinded 10.7 years -> ~400k tracks
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Fit quality
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● Goodness-of-fit with p-value~10%

● Bin-wise pulls normally distributed

● Nuisance parameters within allowed ranges

880 bins
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Results

● Compatible with                                                                                                                
previous IC analysis


● Null rejection <3σ
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Best fit:

Δm241 = 7.1eV2


θ24 = 15°



Compared with world data
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● Best-fit in tension with other numu disappearance measurements
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Compatibility Tests
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● Ongoing checks to understand result

- Splits in different region of the reconstructed phase space
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Conclusions
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● Unique sterile search

- Different energy range (systematics) to any other experiment

- Signal mainly driven matter enhanced oscillations


● New analysis with major changes

- Event selection

- Energy reconstruction

- Flux treatment


● Unblinded 10.7 years of data

- Consistent with previous IC analyses

- Tension with other experiments


● Ongoing tests to quantify the significance of the result
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