TeVPA 2023 (Naples, Italy)

New Results for eV-scale Sterile Neutrino Searches with IceCube

alfonsogarciasoto@fas.harvard.edu

Neutrino oscillations

• Flavor states -> superposition of mass states

- Parametrise with PMNS matrix
- Measured most of the free parameters at percent level

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$\begin{array}{c} \text{Atmospherics / Accelerators} & \text{Reactors / accelerator} & \text{Solar / reactors} \end{array}$$

Anomalies

Measurements in tension with standard oscillation (i.e. 3 states) at $>3\sigma$

- Gallium anomaly -> less v_e than expected
- LSND -> more \bar{v}_e than expected
- MiniBoone -> more v_e and \bar{v}_e than expected

Phys. Rev. Lett. 121, 221801

2.5

Data (stat err v_e from $\mu^{+/-}$ v_e from K^{+/-}

3+1 model

- Minimal extension -> new mass state that is blind to weak force
 - Alters standard oscillation probabilities
 - eV-scale sterile allows to explain "one by one" anomalies

Normal ordering

3+1 puzzle

• 3+1 does not find a consistent picture when performing global fits

- $v_{\mu} \rightarrow v_{e}$ appearance requires $v_{\mu} \rightarrow v_{\mu}$ disappearance

Largest neutrino detector on Earth!

1km x 1km x 1km Buried >2km under the ice

>5k optical sensors

Atmospheric neutrinos

Up-going -> shield for atmospheric muons

Matter enhanced oscillation

Matter enhanced oscillation

Select upgoing tracks

• Moving from simple cuts to BDTs

- Reduce the contamination of atmospheric muon (<2.5 events/y)
- Higher muon neutrino efficiency (factor 1.4)

Energy estimator

• New energy reconstruction using NN

Dedicated event selection for starting events -> better proxy from neutrino energy

Systematics

• Main changes with respect to previous analysis

- Bulk ice -> moving to energy+zenith dependence
- Conventional flux -> new treatment using DAEMONFLUX (PRD107, 123037)
- Non-conventional flux -> Using broken power law

	Central	lσ Prior				
Detector Parameters	Value	Width	Conventional Flux Parameters			
Normalization	1.0	± 0.4	Atm. Density	0	± 1.0	
DOM efficiency	1.27	$\pm 10\%$	Kaon energy loss	0.0	± 1.0	
Ice Amplitude 0	0.0	± 1.0	K_{158G}^{+}	0.0	± 1.0	о <mark>Б</mark>
Ice Amplitude 1	0.0	± 1.0	K_{158C}^{-}	0.0	± 1.0	ti ni
Ice Amplitude 2	0.0	± 1.0	π^+_{20T}	0.0	± 1.0	bub
Ice Amplitude 3	0.0	± 1.0	π_{20T}^{-1}	0.0	± 1.0	Lo Ha
Ice Phase 1	0.0	± 1.0	K_{2P}^{2P}	0.0	± 1.0	- <u>a</u>
Ice Phase 2	0.0	± 1.0	K_{2P}^{21}	0.0	± 1.0	
Ice Phase 3	0.0	± 1.0	π_{2D}^{21}	0.0	± 1.0	
Ice Phase 4	0.0	± 1.0	π_{2P}^{2F}	0.0	± 1.0	
Forward Hole Ice	-1.0	± 10	D_2P	0.0	± 1.0	
Cross-section Parameters			n_{2P}	0.0	± 1.0	
ν cross section	1.0	± 0.1	GSF_1	0.0	± 1.0	<u>.0</u>
$\bar{\nu}$ cross section	1.0	± 0.1	GSF_2	0.0	± 1.0	ay
High-energy Flux Parameters			GSF_3	0.0	± 1.0	Š
Normalization	0.787	± 0.36	GSF_4	0.0	± 1.0	
$\Delta \gamma_1$, tilt from -2.5	0.0	± 0.36	GSF_5	0.0	± 1.0	
$\Delta \gamma_2$, tilt from -2.5	0.0	± 0.36	GSF_6	0.0	± 1.0	
Pivot energy in log10	-	-				

Data Sample

• Unblinded 10.7 years -> ~400k tracks

Fit quality

- Goodness-of-fit with p-value~10%
- Bin-wise pulls normally distributed
- Nuisance parameters within allowed ranges

Results

 $\begin{array}{l} \underline{\text{Best fit:}}\\ \Delta m^2_{41} = 7.1 \text{eV}^2\\ \theta_{24} = 15^\circ \end{array}$

- Compatible with previous IC analysis
- Null rejection $<3\sigma$

Compared with world data

• Best-fit in tension with other numu disappearance measurements

Compatibility Tests

- Ongoing checks to understand result
 - Splits in different region of the reconstructed phase space

Conclusions

• Unique sterile search

- Different energy range (systematics) to any other experiment
- Signal mainly driven matter enhanced oscillations
- New analysis with major changes
 - Event selection
 - Energy reconstruction
 - Flux treatment

• Unblinded 10.7 years of data

- Consistent with previous IC analyses
- Tension with other experiments

Ongoing tests to quantify the significance of the result

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101025085.

BDT distribution

Non-conventional priors

Sensitivity


```
1D distributions
```

2d pulls

Best-fit vs null flux

