Neutrino Spin Flavor Oscillations in the Intergalactic Medium

Neetu Raj Singh Chundawat

Indian Institute of Technology Jodhpur, India

TeV Particle Astrophysics (TeVPA) 2023 11th September 2023

ヨト・イヨト

< <p>I > < </p>

Plan of talk

- 1 SM and its limitations
- 2 Neutrino Oscillations
- ③ Spin Flavor Oscillations
- 4 Effects of Intergalactic magnetic field on Neutrinos
- 5 Conclusions

Based on "Cosmic neutrino flux and spin flavor oscillations in intergalactic medium", Ashutosh Kumar Alok, NRSC and Arindam Mandal, Phys. Lett. B 839, 137791 (2023).

SM and its limitations

Sometimes regarded as theory of almost everything!

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

Why SM is not a complete theory?

SM fails to account for the matter-antimatter asymmetry of the Universe SM does not include gravity SM includes no dark matter and dark energy candidates

We need to look for physics beyond Standard Model!

nan

A B < A B <</p>

Neutrinos in the SM

- Only neutral fermions in the SM
- Neutrinos do not feel a strong force or electromagnetic force
- Massless, move with the speed of light and neutrinos are always left handed (opposite for anti-neutrinos)
 - Trillions of neutrinos pass per second through you for every second of your life!
 - They come from the sun, atmosphere, natural radioactivity in the Earth, and the relic neutrinos from the Big Bang
 - Even a light year of lead (six trillion miles) would only stop half of the neutrinos flying through it

UBIQUITOUS BUT MYSTERIOUS PARTICLES!

Neutrino Oscillations

It is a quantum mechanical phenomenon, first proposed by Bruno Pontecorvo in 1957, followed by Maki, Nakagawa & Sakata in 1962, which successfully explained the famous Solar Neutrino Anomaly.

- $\bullet~\nu_{\rm e},~\nu_{\mu}$ and ν_{τ} are flavor eigenstates, not mass eigenstates
- Interference of different massive neutrinos
- Oscillations between different active neutrino flavors are possible if neutrinos are massive and mixed

$$u_e =
u_1 \cos \theta +
u_2 \sin \theta$$

 $u_\mu = -
u_1 \sin \theta +
u_2 \cos \theta$

Noble Prize in 2015 has been awarded to T. Kajita (SuperK collab.) and A.B. McDonald (SNO collab.) for the discovery of neutrino oscillations which confirms that neutrinos have mass.

Э

Electromagnetic (EM) properties of neutrinos

- A finite neutrino mass would lead to EM properties: First mentioned by Pauli in 1930
- Such interactions can arise due to the quantum loop effects

$$H_{em}^{(\nu)}(x) = \bar{\nu}(x) \Lambda_{\mu} \nu(x) A^{\mu}(x)$$

where Λ_{μ} is a vertex function in which neutrino EM properties are contained

 $\Lambda_{\mu}(q) = f_{Q}(q^{2}) \gamma_{\mu} - f_{M}(q^{2}) \iota \sigma_{\mu\nu} \gamma^{\nu} + f_{E}(q^{2}) \sigma_{\mu\nu} \gamma^{\nu} \gamma_{5} + f_{A}(q^{2}) (q^{2} \gamma_{\mu} - q_{\mu}q) \gamma_{5}$ where f_{Q} , f_{M} , f_{E} , and f_{A} are real charge, dipole magnetic and electric, and anapole moment form factors. [Giunti & Studenikin 2015]

In the Minimal Extended SM (MESM) with Right-handed neutrinos (SM allowing neutrinos to be massive), finite value of neutrino magnetic moment is allowed.

Electromagnetic (EM) properties of neutrinos

In the MESM, the magnetic moment can be written as

$$\mu_{
u} = rac{3eG_Fm_{
u}}{8\pi^2\sqrt{2}} pprox 3.2 x 10^{-19} rac{m_{
u}}{1eV} \mu_B$$

 $\mu_B \rightarrow$ Bohr Magneton [Lee & Shrock 1977, Shrock & Fujikawa 1980]

Measurements on Neutrino Magnetic moment

• Terrestrial Experiments: $\mu_{\nu} \sim 10^{-11} \mu_B$ [TEXONO 2006, Borexino 2017, GEMMA 2007], $\mu_{\nu} \sim 10^{-12} \mu_B$ [XENON1T 2022]

 Astrophysical Bounds: d.o.f. in BBN, stellar cooling via plasmon decay, cooling of SN1987a, Red giant Luminosity etc [Brdar, Greljo, Kopp and Opferkuch 2020]

 $\mu_{
u}$ can be enhanced up to these levels in a number of new physics models!

The study of Neutrino EM properties is important as they are directly related to fundamental particle physics!

Spin Flavor Oscillations

- Idea was introduced by Voloshin, Vysotsky and Okun in 1986 to explain solar neutrino deficit
- ${\, \bullet \, }$ Due to $\mu_{\nu},$ neutrinos can interact with magnetic fields
- μ_{ν} induces an LH to RH neutrino(and vice-versa) transition due to helicity Flip when placed in a magnetic field - Spin Flip Precession
- Flavor oscillations will also subsist during the passage through an external magnetic field -Flavor oscillations
- As a result, both spin and flavor oscillations can proliferate during their propagation - " Spin Flavor oscillations"

LARGER EFFECTS CAN BE SEEN IN THE ASTROPHYSICAL SET-UPS!

Intergalactic Magnetic Field

- Several measurements show that such fields do exist: Omnipresent
- Spans over astonishingly large scales : Interstellar as well as Intergalactic
- Magnetic energy contributions coming from individual galaxies are being stored in the intergalactic separations (μ G or less)

Measurements on IG Magnetic fields

- $\bullet~$ Interstellar magnetic field of the Milky Way is measured to be 2.93 μG within a small uncertainty [Zirnstein et al 2016]
- The first direct measurement of the magnetic field strength in the Coma Cluster is about 2 μ G spanning over a scale of 13-40 kpc [Kim et al 1990]
- Even found in the voids with a strength of $\sim 10^{-16}G$ extending coherently over Mpc scales [Vachaspati 2021, Subramanian 2016]

Although this field is small ($O(\mu G)$ or less), this can effectuate observable spin-flavor oscillations since the neutrinos can travel a very large distance in the interstellar and intergalactic field!

• The Dirac equation obeyed by neutrinos in the presence of a magnetic field is

$$(\gamma_{\mu}\boldsymbol{p}^{\mu}-\boldsymbol{m}_{i}-\mu_{i}\boldsymbol{\Sigma}\boldsymbol{B})\nu_{i}^{s}(\boldsymbol{p})=0$$

 $\nu_i^s \to$ wave function of neutrino of *i*-th mass eigenstate $s \to$ eigenvalues of the spin operator which commutes with the Hamiltonian

• The spin-flavor oscillation probability can be written as,

$${\cal P}^{hh'}_{lphaeta}(x)=|\langle
u^{h'}_eta(0)|
u^h_lpha(x)
angle|^2$$

• For a neutrino flux traversing a very large distance, the probability is averaged out to,

$$P^{hh'}_{\alpha\beta}(x) = \delta_{\alpha\beta}\delta_{hh'} - 2\sum_{\{i,j,s,s'\}} \operatorname{Re}([A^{hh'}_{\alpha\beta}]_{i,j,s,s'}).$$

where $[A_{\alpha\beta}^{hh'}]_{i,j,s,s'} = U_{\beta i}^* U_{\alpha i} U_{\beta j} U_{\alpha j}^* (C_{is}^{h'h}) (C_{is}^{h'h})^*$, $C_{is}^{h'h} = \langle \nu_i^{h'} | \hat{P}_i^s | \nu_i^h \rangle$ and U's are the PMNS matrix elements.

イロト イロト イモト イモト 三日

- The flux of neutrinos passes through an omnipresent intergalactic magnetic field: may undergo spin-flavor oscillations
- Some crucial effect on active neutrino flux is expected!
- The active neutrino flux on earth from a very distant source can be obtained as,

$$\Phi^{\oplus}_{eta} = \sum_{lpha} P^{LL}_{lphaeta} \Phi^s_{lpha},$$

 $\Phi^{\oplus}
ightarrow \mathsf{flux}$ on earth $\Phi^s
ightarrow \mathsf{flux}$ at the source

• The process of averaging out the probablity is subject to the number of cycles completed by the oscillation waveforms

イロト イヨト イヨト

 $\, \bullet \,$ The phase of oscillations ϕ is composed of two different phases, $\phi = \! \phi_{\rm v} + \phi_B$

$$\phi = \left[\frac{\Delta m_{ij}^2}{2p} + \mu_{\nu}(s - s')B_{\perp}\right]x$$

- The probability is sum of terms like $(\sin^2 \phi_v)(\sin^2 \phi_B)$, which forms a modulated waveform
- The oscillation length corresponding to each of them is given by $I_v = \frac{\pi}{\omega_v}$, $I_B = \frac{\pi}{\omega_B}$

Probability can be averaged out iff $n=rac{x}{l_v/l_B}\gg 1$ [n=100 (at least)]

<ロト <回ト < 回ト < 回ト -

• For sources lying within the Milky Way Galaxy,

- Averaging out is not possible with the current upper limit of $\mu_{
 u} \sim 10^{-12} \mu_B$
- Neutrinos do not undergo spin-flip oscillations!

• For larger distances, we find that half of the active neutrinos becomes sterile neutrinos

- The flux of neutrinos from sources located above the distances of several kiloparsecs from Earth is reduced by half!
- However, if the current upper limit of the μ_{ν} is improved to approximately $10^{-13}\mu_B$, the reduction of cosmic neutrino flux remains unattainable, even when neutrinos traverse the entire length of the visible universe

- The cosmic neutrinos usually perambulate gargantuan scales in the extragalactic universe having a magnetic field
- If neutrinos have a finite magnetic moment (μ_{ν}) owing to quantum loop corrections, this may result in spin-flavor oscillations, which can affect the cosmic neutrino flux
- The reduction of flux by a factor of half, is satisfied for the neutrino sources lying at a distance of several kpcs from the earth
- The reduction of cosmic neutrino flux is not possible if the current upper limit of μ_{ν} is improved up to $\sim 10^{-13} \,\mu_{\rm B}$ even if the neutrinos travel through the entire length of the visible universe

For a magnetic moment in this range, the effect of spin flavor oscillations can be safely neglected!

Э

イロト イヨト イヨト

THANK YCU!